Effect of Chlorine and Temperature on Larvicidal Activity of Cuban Bacillus thuringiensis Isolates

  • Aileen González-Rizo Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical ¨Pedro Kourí¨, La Habana, Cuba
  • Camilo E Castañet Facultad de Biología, Universidad de La Habana, La Habana, Cuba
  • Ariamys Companioni Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical ¨Pedro Kourí¨, La Habana, Cuba
  • Zulema Menéndez Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical ¨Pedro Kourí¨, La Habana, Cuba
  • Hilda Hernández Departamento de Parasitología, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical ¨Pedro Kourí¨, La Habana, Cuba
  • M Magdalena Rodríguez Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical ¨Pedro Kourí¨, La Habana, Cuba
  • Rene Gato Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical ¨Pedro Kourí¨, La Habana, Cuba
Keywords: Mosquitoes; Biological control; Bacillus thuringiensis; bioassays; chlorine

Abstract

Background: The efficacy of biolarvicides may be influenced by species of mosquito, larval age and density, tem­perature, water quality, bacterial formulation, and others. The aim of this study was to evaluate the influence of tem­perature and chlorine on larvicidal activity of Bacillus thuringiensis Cuban isolates against Aedes aegypti. Methods: The influence of temperature (25, 30, 35 °C) and chlorine (2.25mg/L) on the larvicidal activity of eleven B. thuringiensis Cuban isolates (collected between 2007 and 2009) were tested under laboratory conditions following WHO protocols. Bioassay data were analyzed by Probit program. The effect of chlorine and temperature (25, 30, 35 and 40 °C) on the Cry and Cyt proteins of these isolates was determined by SDS-PAGE polyacrylamide gel electro­phoresis. Results: The pathogenicity of the isolates U81, X48 was affected at 35 °C. However, A21, A51, L910, and R89 isolates increase their entomopathogen activity at 35 °C. No differences were observed in toxicity of M29, R84, R85 and R87 isolates at different temperatures. The Cry 4, Cry 10 and Cry 11 proteins were reduced in A21, X48, R85 isolates at 35 and 40 °C. The Cyt proteins were reduced at 35 and 40 °C in A21, X48, R85, and A51 isolates. In L910 and R84 isolates, the Cyt toxin was degraded only at 40 °C. In chlorinated water, the lethal concentrations 50 and 90 in A21, A51, M29, R84, U81, and X48 isolates were increase. Conclusion: A21, A51, L910, R85, and X48 isolates have a strong larvicidal activity for the treatment of Ae. aegypti breeding’s sites exposed to high temperature and chlorine.  

References

1. Patterson J, Sammon M, Garg M (2016) Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. Western J Emerg Med. 17(6): 671–679.
2. WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and con-trol. World Health Organization, Geneva, Switzerland. Available at: who.int/tdr/publications/documents/dengue-diagnosis.
3. Zhu L, Peng D, Wang Y, Ye W, Zheng J, Zhao C, Han D, Geng C, Ruan L, He J, Yu Z, Sun M (2015) Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis. Sci Rep. 5: 14129.
4. Roh J, Choi J, Li M, Jin B, Je Y (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol. 17(4): 547–559.
5. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 62(3): 775–806.
6. Tetreau G, Alessi M, Veyrenc S, Perigon S, David J, Reynaud S, Després L (2012) Fate of Bacillus thuringiensis subsp. israelensis in the field: evidence for spore recycling and differential persistence of toxins in leaf litter. Appl Environ Microbiol. 78(23): 8362–8367.
7. Tetreau G, Stalinski R, Kersusan D, Veyrenc S, David J, Reynaud S, Després L (2012) Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mos-quito larvae after contact with leaf litter. Appl Environ Microbiol. 78(15): 5189–5195.
8. Gonzalez A, Diaz R, Diaz M, Borrero Y, Bruzon RY, Carreras B, Gato R (2011) Characterization of Bacillus thuringiensis soil isolates from Cuba, with in-secticidal activity against mosquitoes. Rev Biol
Trop. 59(3): 1007–1016.
9. Gonzalez A, Rodriguez G, Bruzon RY, Diaz M, Companionis A, Menendez Z, Gato R (2013) Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba. J Vector Ecol. 38(1): 46–52.
10. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.3.
11. Finney JD (1971) Probit analysis. 3rd ed. Cambridge University Press.
12. Abbott WS (1925) A method of comparing the effectiveness of an insecticide. J Econ Entomol. 18: 265–267.
13. Osborn F, Herrera M, Gomez C, Salazar A (2007) Comparison of two commercial formulations of Bacillus thurin-giensis var. israelensis for the control of Anopheles aquasalis (Diptera: Culicidae) at three salt concentrations. Mem Inst Oswaldo Cruz. 102(1): 69–72.
14. Ortíz P, Pérez A, Rivero A, León N, Díaz M, Pérez A (2006) Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba. Environmental Health Perspectives. 114(12): 1942–1949.
15. WHO (2008) Guidelines for Drinking-water Quality. World Health Organization. Available at: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=1E601A671071164F494C7BD134F71199?sequence=1
16. Carreras B, Sánchez J, Bravo A (2004) Caracterización molecular de cuatro cepas de Bacillus thuringiensis. Relación con la actividad biológica. Rev Protección Veg. 19(2): 80–85.
17. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166(2): 368–379.
18. He X, Sun, He K, Guo S (2017) Biopol-ymer microencapsulations of Bacillus thu¬ringiensis crystal preparations for in-creased stability and resistance to environmental stress. Appl Microbiol Bio-technol.
19. Ortíz-Bultó PL, Pérez-Rodríguez A, Valencia AR, Carreras AP, Cangas JR, Lecha-Estela LB (2008) La variabilidad y el cambio climático en Cuba: potenciales impactos en la salud humana. Revista Cubana de Salud Pública. 34(1).
20. Alonso G, Clark I (2015) Cuba Confronts Climate Change. MEDICC Review. 17 (2): 10–13.
21. Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MU, Scott TW, Wint GR, Smith DL, Hay SI (2015) The many projected futures of dengue. Nat Rev Microbiol. 13(4): 230–239.
22. Barrera R, Amador M, MacKay A (2011) Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl Trop Dis. 5(12): e1378.
23. Johansson M, Dominici F, Glass G (2009) Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis. 32(2): e382.
24. Cao C, Sun L, Wen R, Li X, Wu H, Wang Z (2012) Toxicity and affecting factors of Bacillus thuringiensis var. israelen¬sis on Chironomus kiiensis larvae. J Insect Sci. 12(126): 1–8.
25. Mulla M, Darwazeh H, Zgomba M (1990) Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringiensis (H-14) against mosquitoes. Bull Soc Vector Ecol. 15(2): 166–175.
26. Stevens M, Akhurst R, Clifton M, Hughes P (2004) Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae). J Invertebr Pathol. 83(3): 104–110.
27. Zhang M, Feng M, Xiao L, Song X, Yang W, Ding G (2015) Impact of water content and temperature on the degradation of Cry1Ac protein in leaves and buds of Bt cotton in the soil. PLoS One. 10(1): e115240.
28. Bernard A (2007) Chlorination products: emerging links with allergic diseases. Curr Med Chem. 14(16): 1771–1782.
29. Marquetti MC, Suárez S, Bisset J, Leyva M (2005) Reporte de hábitats utilizados por Aedes aegypti en Ciudad de La Habana, Cuba. Rev Cubana Med Trop. 57(2): 159–161.
30. Shang C, Blatchley E (2001) Chlorina-tion of pure bacterial cultures in aqueous solution. Water Res. 35(1): 244–254.
31. Martinez-Hernandez S, Vazquez-Rodriguez G, Beltran-Hernandez R, Prieto-Garcia F, Miranda-Lopez J, Franco-Abuin CM, Álvarez-Hernández A, Iturbe U, Coronel-Olivares C (2013) Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP. Int J Environ Res Public Health. 10(8): 3363–3383.
32. Venkobachar C, Iyengar L, Prabhakara Rao AVS (1977) Mechanism of disinfec¬tion: Effect of chlorine on cell membrane func¬tions. Water Res. 11(8): 727–729.
33. Rice E, Adcock N, Sivaganesan M, Rose L (2005) Inactivation of spores of Ba-cil¬lus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. is-raelensis by chlorination. Appl Envi¬ron Microbiol. 71(9): 5587–5589.
34. Setlow P (2006) Spores of Bacillus sub-tilis: their resistance to and killing by ra¬diation, heat and chemicals. J Appl Mi¬crobiol. 101(3): 514–525.
35. Stockel S, Schumacher W, Meisel S, Elschner M, Rosch P, Popp J (2010) Ra¬man spectroscopy-compatible inacti-va¬tion method for pathogenic endospores. Appl Environ Microbiol. 76(9): 2895–2907.
Published
2019-03-09
How to Cite
1.
González-Rizo A, Castañet CE, Companioni A, Menéndez Z, Hernández H, Rodríguez MM, Gato R. Effect of Chlorine and Temperature on Larvicidal Activity of Cuban Bacillus thuringiensis Isolates. J Arthropod Borne Dis. 13(1):39.
Section
Original Article