## **Original Article**

# A Cross-Sectional Survey of the Relationship between Rosacea and *Demodex*Mite Infestation in Patients Referred to the Medical Centers of Tabriz University of Medical Sciences

# Shahab Gitifard<sup>1</sup>, Aliakbar Shekarchi<sup>2</sup>, Mehdi Amirnia<sup>3</sup>, Rahim Asghari-Azar<sup>3</sup>, \*Teimour Hazratian<sup>1</sup>

<sup>1</sup>Department of Parasitology, Medical Entomology and Mycology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

<sup>2</sup>Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran <sup>3</sup>Department of Dermatology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

\*Corresponding author: Dr Teimour Hazratian, E-mail: hazratian2@gmail.com

(Received 30 May 2025; accepted 21 June 2025)

#### **Abstract**

**Background:** Rosacea is a common chronic and recurrent skin disease whose etiology is not precisely clear. This study aimed to investigate the relationship between rosacea and *Demodex* mite infestation in patients referred to the medical centers of Tabriz University of Medical Sciences during 2023.

**Methods:** Patients' information, including age, gender, and clinical symptoms of rosacea diagnosis, was recorded. 60 out of 71 patients underwent standard superficial skin biopsy with a thickness of 5  $\mu$ m from their faces, with a drop of immersion oil, and were examined under a light microscope.

**Results:** The mean *Demodex* density was 19.20 mites/cm². Of these 60 rosacea patients, 47 (78.3%) were female and 13 (21.7%) were male. The highest *Demodex* mite infestation was in the 31-40 age group (38%). Out of 50 patients with positive *Demodex* (83.3%), 41 (68.3%) were related to *D. folliculorum* and 9 (15%) were related to *D. brevis*. Of the 41 patients infected with *Demodex*, 31 (out of 47, 66.0%) were women and 10 (out of 13, 76.9%) were men. The p-values for the relationships between age, gender, and mite species with mite count were all greater than 0.05. This indicates no statistically significant evidence of a direct relationship.

**Conclusion:** *Demodex* mite density was higher in rosacea than the normal benchmark of <5 mites/ cm². This strong association suggests *Demodex* overpopulation plays a key role in the disease. Therefore, treatment strategies for rosacea should include acaricidal therapy targeting the mites.

**Keywords:** Rosacea; *Demodex*; Mite; Demodicosis; Iran

#### Introduction

Rosacea is a common chronic and recurrent skin disease whose etiology is not precisely known (1). In other words, rosacea is a skin disorder with multiple symptoms (2). The origin of rosacea and its prevalence in the community are not precisely known, with a reported prevalence of 0.9 to 22% (3). Rosacea can present with various skin symptoms, including redness, flushing, telangiectasia, edema, papules, pustules, rhinophyma and ocular manifestations. Rosacea is classified into subtypes or subgroups

of Erythematotelangiectasia, Papulopustular, Phymatous and Ocular (4–6).

Genetic studies suggest the involvement of gene combinations in the development of rosacea, but the gene that causes rosacea has not yet been identified. Studies based on the molecular method, Real-Time PCR, have also shown that rosacea subtypes differ from each other and from healthy skin (7, 8). In rosacea, blood vessels and hair follicle units called pilosebaceous are affected, which include hair

165

http://jad.tums.ac.ir Published Online: June 30, 2025 follicles, sebaceous glands and arrector pili muscle (9, 10).

The diagnosis of this disease is made by a dermatologist after a physical examination of the skin, assessment of family history and exclusion of other diseases such as lupus, acne, and scalp eczema. For treatment, in the first line, after educating the patient about skin care, topical creams and gels such as metronidazole 1%, permethrin 5%, tea tree cream and azelaic acid 15% are used and in the later stages, oral medications such as metronidazole and tetracyclines, laser and light therapy are also used (11). In treatment, if the redness is normal, anti-allergic and sunscreen gels and creams with at least Sun Protection Factor (SPF) 30 are used, but if it is ulcerated, metronidazole and azelaic acid will be used. Thickening of the skin around the nose, which is caused by enlarged sebaceous glands, makes the nose look large and eye symptoms of rosacea are treated with topical cyclosporine, as well as eyelid hygiene and the use of antibiotics locally and systemically (12–14).

Today, researchers have identified factors such as an increased density of *Demodex* mites on the face as being involved in the occurrence and exacerbation of rosacea (15). Regarding the relationship between rosacea and *Demodex* mite infestation, several studies have been conducted in different parts of the world, most of which have reported a high prevalence of *Demodex*. In a study in Iran, this prevalence has been reported to be 38%, but it is not clear whether rosacea provides the basis for the activity and increase in the population of mites or whether the increase in the population of mites leads to rosacea (16). In another study in Hungary, it was estimated at 17.7% (17). Therefore, the pathogenic role of *Demodex* mites in rosacea has been demonstrated by original research and systematic reviews (14, 16).

*Demodex* mites are from the phylum Arthropoda and the order Arachnida and have different types, of which more than 100 species have been identified so far (17). *Demodex* has a striped abdomen and is generally not similar

to other mites. It is relatively similar to a tapeworm and has a thorax and four pairs of very small, fat legs with 5 segments. Demodex folliculorum and D. brevis were first identified by Henle and Berger in 1841 and were distinguished from each other by Akbulatova in 1963. Demodex folliculorum is larger than D. brevis and its tip is rounded; its size is 300-400 microns, while D. brevis has a pointed tip, short legs and a size of 100-200 microns (18-26). Under normal conditions, these mites are the natural fauna of human skin, especially in the facial area, and there are usually fewer than 5 mites per centimeter of skin (27). If their number increases and they penetrate the skin, they cause acne, folliculitis, especially rosacea and the higher the mite population, the more severe the dermatitis becomes (28-30). Moravvej et al. (16), Roihu and Kariniemi (24) and Cengiz et al. (31) have proven a relationship between rosacea and *Demodex* mite infestation.

We hypothesized that *Demodex* mite density would be significantly higher in rosacea patients compared to established normal thresholds. Therefore, this study was conducted to investigate the relationship between rosacea and *Demodex* mite infestation in patients referred to the medical centers of Tabriz University of Medical Sciences during 2023.

#### **Materials and Methods**

#### Study population and data collection

This study was conducted over one year at the dermatology department of Sina Hospital, Tabriz. Patients presenting with skin disorders were evaluated and those with a definitive diagnosis of rosacea were included. A total of 60 rosacea patients were enrolled. Patient data, including age, gender and clinical symptoms, were recorded. The primary symptoms assessed were flushing, transient and permanent erythema, papules, pustules and telangiectasia. Secondary symptoms included skin

burning or tingling, edema, dryness, and ocular or phymatous manifestations.

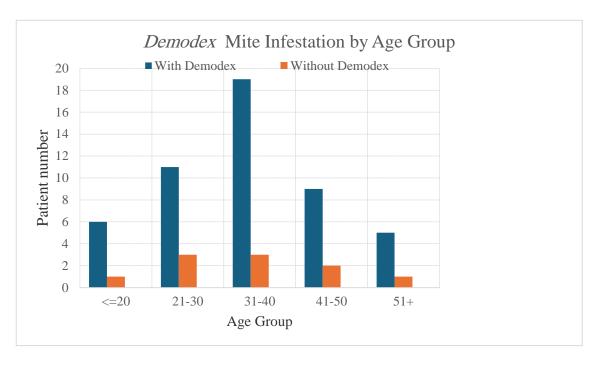
# Sample collection and microscopic examination

Following diagnosis, a standardized skin surface biopsy (SSSB) was performed on the facial skin. A cyanoacrylate glue strip was applied to the skin and gently removed after a minute, collecting the superficial portion of the stratum corneum and the contents of the pilosebaceous follicles. The sample was placed on a microscope slide with a drop of immersion oil, covered with a coverslip, and examined under a light microscope.

#### Parasite identification and quantification

Samples were examined for the presence of *Demodex* mites. Each sample was examined in its entirety and the process was repeated for three non-consecutive areas per patient, with the results averaged to determine the mite density (mites/cm²). The two main species, *Demodex folliculorum* and *Demodex brevis*, were differentiated based on their distinct morphology: *D. folliculorum* possesses a longer, sharper capitulum (gnathosoma) and is often found in clusters, while *D. brevis* has a spindle-shaped body and is typically found singly. An infestation was considered positive based on a density of >5 mites/cm².

#### Statistical analyses


The results of descriptive statistics were determined for qualitative variables as frequency and percentage and for quantitative variables as mean and standard deviation, using SPSS software. Chi-square test and independent t-test were used to examine the relationship between qualitative variables. Linear regression was also used to examine the relationship between the number of parasites and other variables.

#### Results

Of the 71 patients referred to the dermatology department for facial skin disorders, 60 were

diagnosed with rosacea and 11 were excluded from the study. Of these 60 rosacea patients, 47 (78.3%) were female and 13 (21.7%) were male. The average age of the patients was 35 years, with the lowest being 17 and the highest being 55 years. The prevalence of *Demodex* mite infestation across age groups was as follows: 10-20 years: 12% (6/50), 21-30 years: 22% (11/50), 31-40 years: 38% (19/50), 41-50 years: 18% (9/50) and 50+ years: 10% (5/50) (Fig. 1). The number of mites in each sample was also counted and the average severity of infestation of individuals with mites was 19.20 (Average number of parasites per patient).

Out of 50 rosacea patients with positive Demodex infestation, 41 were related to D. folliculorum and 9 were related to D. brevis. Of the 41 patients infected with D. folliculorum, 31 were women and 10 were men. This means that the percentage of *Demodex* mite infestation in the male population is higher than that in the female population in this study. To investigate the relationship between the variables of gender, age groups, D. folliculorum and D. brevis with the number of Demodex species (D. folliculorum and D. brevis) parasites, a linear regression model was used, according to the results. Linear regression showed that gender was not a significant predictor of mite density (p>0.05). This suggests that the density of Demodex mites was consistently high across different patient demographics and parasite species. Furthermore, standardized skin surface biopsy revealed a high Demodex density (>5 mites/ cm<sup>2</sup>) across the cohort, confirming a diagnosis of demodicosis. In other words, these results demonstrate a strong relationship between Demodex mite overpopulation and rosacea, independent of the specific patient demographics or *Demodex* species investigated.



**Fig. 1.** *Demodex* mite infestation by age group in patients referred to the medical centers of Tabriz University of Medical Sciences during 2023



**Fig. 2.** Representative clinical photograph of a female patient with papulopustular rosacea. The image shows centrofacial erythema, telangiectasia, and several inflammatory papules and pustules. The patient was part of the cohort referred to the medical centers of Tabriz University of Medical Sciences during 2023. Informed consent for publication was obtained

## **Discussion**

This study aimed to investigate the relationship between rosacea and *Demodex* mite infestation in patients referred to the medical centers of Tabriz University of Medical Sciences. Our findings demonstrate a high prevalence of demodicosis, with 83.3% (50/60) of rosacea patients presenting with a Demodex mite density above the clinical threshold of 5 mites/cm<sup>2</sup>. The mean mite density across the cohort was 19.20 mites/cm<sup>2</sup>, clearly confirming demodicosis in this patient population. Out of 60 patients, 47 (78.3%) were female and 13 (21.7%) were male. The average age of patients was 35±10.5 years. These results strongly support a significant association between Demodex mite overpopulation and rosacea.

A linear regression analysis was performed to determine if mite density was influenced by gender, age group, or *Demodex* species (*D. folliculorum* vs. *D. brevis*). The analysis revealed that none of these variables had a statistically significant relationship with the mite count (P>0.05). This indicates that the high mite density observed in this rosacea cohort was a consistent finding, independent of the patient's demographic background or the predominant *Demodex* species. *Demodex folliculorum* was the most frequently identified species (68.3% of infested patients), which aligns with its common predominance in the facial skin microenvironment.

Our results are consistent with a body of international research linking *Demodex* mites to rosacea. For instance, Moravvej et al. (2007) in Tehran reported a significantly higher prevalence of *Demodex* in rosacea patients (38.6%) compared to those with other dermatoses like actinic lichen planus (10.6%) and discoid lupus erythematosus (21.3%) (16). Similarly, Roihu and Kariniemi (1998) in Finland found a *Demodex* prevalence of 51% in their rosacea group, significantly higher than in control groups with lupus or eczema (24). The prevalence of 83.3% in our study is notably high, which may be

attributed to the use of the highly sensitive standardized skin surface biopsy (SSSB) technique for mite quantification, a method not always employed in earlier histological studies.

Rosacea has a progressive course but is not always seen as multiphasic (33). Numerous studies have shown that rosacea is a vascular skin disorder. Rosacea often begins with flushing and redness of the skin, leading to increased blood flow in the skin vessels, which causes the accumulation of intercellular fluid in the skin. Edema and cellular changes also damage the lymphatic vessels, which are followed by inflammatory lesions in the form of papules, pustules, telangiectasias and sometimes nodules. The acute form of rosacea is rhinophyma, which causes an enlarged nose.

The German dermatologist Simon Gustav first reported the presence of *D. folliculorum* and *D. brevis* in the human body about 170 years ago. The difference between these two species was also stated by Akbulatova (34–36).

The pathogenic role of *Demodex* in rosacea remains a subject of discussion. It is hypothesized that the mites may act as triggers for an inflammatory response, or conversely, that the altered skin environment of rosacea patients facilitates mite overpopulation (16). Our study, showing a universal high mite density regardless of specific demographic factors, lends weight to the idea of a fundamental host-skin environment interaction in rosacea that permits *Demodex* proliferation. This is further supported by the low mite densities (<5 mites/cm²) typically reported on healthy skin, a stark contrast to our findings (16).

While some studies, such as one by Horvath et al. (2011), report a much lower *Demodex* prevalence in healthy populations (17.7%), others, like the study by Taş Cengiz et al. in Turkiye, report rates closer to 48% in their sample, also noting an increase with age (31). This variability underscores the influence of geographical, methodological and population-

specific factors.

In general, studies in Iran and other parts of the world have shown that there is a significant relationship between *Demodex* density and rosacea. The results of the present study are in line with the studies conducted and suggest simultaneous treatment of rosacea and demodicosis.

The strengths of the study were the diagnosis of patients by a dermatologist. Time limitation, lack of coverage of a larger population, and the lack of a control group were the weaknesses of this study.

#### **Conclusion**

In summary, the results of the present study provide compelling evidence of a strong association between *Demodex* mite overpopulation and rosacea in the studied population. The consistently high mite density, independent of age or gender, highlights the importance of assessing *Demodex* infestation in rosacea patients. Therefore, we suggest that the evaluation for and concomitant treatment of demodicosis should be considered an integral component of the management strategy for patients presenting with rosacea.

# Acknowledgements

This study was financially supported by Tabriz University of Medical Sciences.

### **Ethical Considerations**

This study was approved by the ethical committee of Tabriz University of Medical Sciences and followed the Helsinki Declaration (approval number: IR.TBZMED.REC.1402. 970). Informed consent was obtained from all participants.

#### **Conflict of interest statement**

The authors declare that there is no conflict of interest.

#### References

- 1. Buechner SA (2005) Rosacea: an update. Derm. 210(2): 100 –108.
- 2. Tan J, Berg M (2013) Rosacea: Current state of epidemiology. J Am Acad Derm. 69 (6): 27–35.
- 3. Sepoendilin J (2012) A study on the epidemiology of rosacea. Br J Derm. 167 (3): 598–605.
- 4. Pelle MT, Crawford GH, James WD (2004) Rosacea: II. Therapy. J Am Acad Derm. 51(4): 499–512.
- 5. Schaller M, Almeida LMC, Bewley A, Cribier B, Dlova NC, Kautz G, Mannis M, Oon HH, Rajagopalan M, Steinhoff M, Thiboutot D, Troielli P, Webster G, Wu Y, Van Zuuren E, Tan J (2017) Rosacea treatment update: recommendations from the global rosacea consensus (ROSCO) panel. Br J Derm. 176(2): 465–471.
- 6. Yamasaki K, Gallo RL (2009) The molecular pathology of rosacea. J Derm. 55(2): 77–81.
- 7. Steinhoff M, Buddenkotte J, Aubert J, Sulk M, Novak P, Schwab VD, Mess C, Cevikbas F, Rivier M, Carlavan I, Deret S, Rosignoli C, Metze D, Luger TA, Voegel JJ (2011) Clinical, cellular and molecular aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 15(1): 2–11.
- 8. Culp B, Scheinfeld N (2009) Rosacea: A review. P T. 34(1): 38–45.
- 9. Oge LK, Muncie HL, Philips-Savoy AR (2015) Rosacea: Diagnosis and treatment. Am Fam Physician. 92 (3): 187–196.
- 10. Powell FC (2005) Rosacea. N Engl J Med. 352: 793–803.

- 11. Abokwidir M, Feldman SR (2016) Rosacea management. Skin Appendage Disord. 2 (1-2): 26–34.
- 12. Zuuren EJV (2007) Systematic review of rosacea treatments. J Am Acad Derm. 56 (1): 107-115.
- 13. Biernat MM, Rusiecka-Ziolkowska J, Piatkowska E, Helemejko I, Biernat P, Gosciniak G (2018) Occurrence of *Demodex* species in patients with blepharitis and in healthy individuals: a 10–year observational study. Jpn J Ophthalmol. 62(6): 628–633.
- 14. Forton FMN (2020) The pathogenic role of *Demodex* mites in rosacea: A potential therapeutic target already in erythematotelangiectatic rosacea. Derm. 10: 1229–1253.
- 15. Gerber PA, Alexandra Buhren B, Steinhoff M, Homey B (2011) Rosacea: the cytokine and chemokine network. J Investig Dermatol Symp Proc. 15(1): 40-46.
- 16. Moravvej H, Dehghan–Mangabadi M, Abassia MR, Meshkat–Razavi G (2007) Association of rosacea with democosis. Arch Iranian Med. 10(2): 199–203.
- 17. Horvath A, Neubrandt DM, Ghidan A, Nagy K (2011) Risk factors and prevalence of *Demodex* mites in young adults. Acta Microbiol Immunol Hung. 58(2): 145-155.
- 18. Basta- Juzbasic A, Subic JS, Ljubojevic S (2002) *Demodex folliculorum* in development of dermatitis rosaceiformis steroidica and rosacea-related diseases. Clin Derm. 20: 135–140.
- 19. Post CF, Juhlin E (1963) *Demodex follic-ulorum* and blepharitis. Arch Derm. 88: 298–302.
- 20. Erbagci Z, Ozgoztasi O (1998) The significance of *Demodex folliculorum* density in rosacea. Int J Derm. 37: 421–425.
- 21. Georgala S, Katoulis AC, Kylafis GD, Koumantaki-Mathioudaki E, Georgala C, Aroni A (2001) Increased density of *Demodex folliculorum* and evidence of delayed hypersensitivity reaction in subjects

- with papulpustular rosacea. J Eur Acad Dermatol Venereol. 15(5): 441–444.
- 22. Morras PG, Santos SP, Imedio I, Echeverria ML, Hermosa JMH (2003) Rosacea-like demodicosis in an immunocomoromised child. Pediatr Dermatol. 20(1): 28–30.
- 23. Lane RP, Crosskey RW (2012) Medical Insects and Arachnids. Springer Science & Business Media.
- 24. Roihu T, Kariniemi AI (1998) *Demodex* mites in acne rosacea. J Cutan Pathol. 25: 550–552.
- 25. Lacey N, Delaney S, Kavanagh K, Powell FC (2007) Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Derm. 157: 474–481.
- 26. Liu J, Sheha H, Tseng SC (2010) Pathogenic role of *Demodex* mites in blepharitis. Curr Opin A Clin Immunol. 10: 505–510.
- 27. Lee SH, Chun YS, Kim JH, Kim ES, Kim JC (2010) The relationship between *Demodex* and ocular discomfort. Invest Ophthalmol Vis Sci. 51: 2906–2911.
- 28. Rufli T, Mumcuoglu Y (1981) The hair follicle mites *Demodex folliculorum* and *Demodex brevis*: Biology and medical importance. A review. J Derm. 162: 1–11.
- 29. Gonzalez-Hinojosa D, Jaime-Villalonga A, Aguilar-Montes G, Lammoglia-Ordiales L (2018) *Demodex* and rosacea: Is there a relationship? Indian J Ophthalmol. 66 (1): 36-38.
- 30. Moran EM, Foley R, Powell FC (2017) *Demodex* and rosacea revisited. Clin Dermatol. 35(2): 195–200.
- 31. Cengiz ZT, Yilmaz H, Uce Ozkol H, Ekici A, Odemis N (2014) The prevalence of *Demodex* sp. in patient admitted to the parasitology laboratory of the Dursun Odabash Medical Center in Yuzuncu Yil University, Van. J T Parasitol Derg. 38(1):
- 32. Zhong J, Tan Y, Li S, Peng L, Wang B, Deng Y, Yuan J (2019) The prevalence of *Demodex folliculorum* and *Demodex*

- *brevis* in Cylindrical dandruff patients. J Ophthalmol. 1(1): 1-7.
- 33. Jarmuda S, Reilly NO, Zaba R, Jakubowicz O, Szkaradkiewicz A, Kavanagh K (2012) Potential role of *Demodex* mites and bacteria in the induction of rosacea. J Med Microbiol. 61(11): 1504–1510.
- 34. Noreen L, Kevin K, Scheffer CGT (2009) Under the lash: *Demodex* mites in human diseases. J Biochem. 31(4): 20–24.
- 35. Wilkin JK (1994) Rosacea pathology and treatment. Arch Derm. 130: 359–362.
- 36. Jansen T, Plewig G (1997) Rosacea: Classification and treatment. J R Soc Med. 90: 144–150.