

Original Article

Assessment of the Impact of Diflubenzuron on the Inhibition of Adult Emergence in *Aedes aegypti* (Diptera: Culicidae) from Hormozgan Province, Iran, 2025

Saeedeh Ebrahimi¹, Hassan Vatandoost¹, Mohammad Ali Oshaghi¹, Kourosh Azizi², Mahnaz Khanavi³, *Seyed Hassan Moosa-Kazemi¹

¹Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

²Department of Medical Entomology and Vector Control, Research Center for Health Sciences, Institute of Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

³Department of Pharmacognosy, Persian Medicine and Pharmacy Research Center, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

*Corresponding author: Dr Seyed Hassan Moosa-Kazemi, E-mail: moosakazemi@tums.ac.ir

(Received 29 Aug 2025; accepted 29 Sep 2025)

Abstract

Background: The presence of *Aedes aegypti* in Iran and the risk of transmitting viral diseases, such as dengue and Zika, underscore the importance of evaluating effective vector control methods.

Methods: This study investigated the effectiveness of diflubenzuron, an insect growth regulator that inhibits chitin synthesis, in preventing adult emergence of *Ae. aegypti* larvae from Hormozgan. The concentrations of 0.03, 0.06, 0.12 and 0.24 mg/L of 25% wettable powder formulations of diflubenzuron were used, according to WHO protocols.

Results: Diflubenzuron was highly effective at 0.24 mg/L, achieving 98% emergence inhibition ($EI_{50}=0.053$ mg/L, $EI_{90}=0.146$ mg/L). At lower concentrations, e.g., 0.12 mg/L, emergence inhibition decreased to 83%, indicating a clear concentration-dependent reduction in efficacy. Larvae exposed to sublethal doses displayed abnormal movements and reduced responses to stimuli.

Conclusion: This experiment supports diflubenzuron's potential as an effective larvicide for vector control programs in Iran. However, field trials and resistance monitoring are recommended before widespread implementation.

Keywords: *Aedes aegypti*; Invasive mosquito; *Stegomyia aegypti*; Insect growth regulator; Emergence inhibition

Introduction

Mosquitoes are significant vectors of parasites, viruses, bacteria and nematodes (1, 2). *Aedes aegypti* is one of the most dangerous insects to humans because it is the primary vector of deadly diseases, such as dengue, chikungunya, Zika and yellow fever (3–4). The habitat of this vector is closely related to the conditions inside and outside homes where human populations reside (5–7). Chemical insecticides are the primary methods for vector control. However, many of these chemicals pose health risks to humans, harm the environment and contribute to the development of resistance in

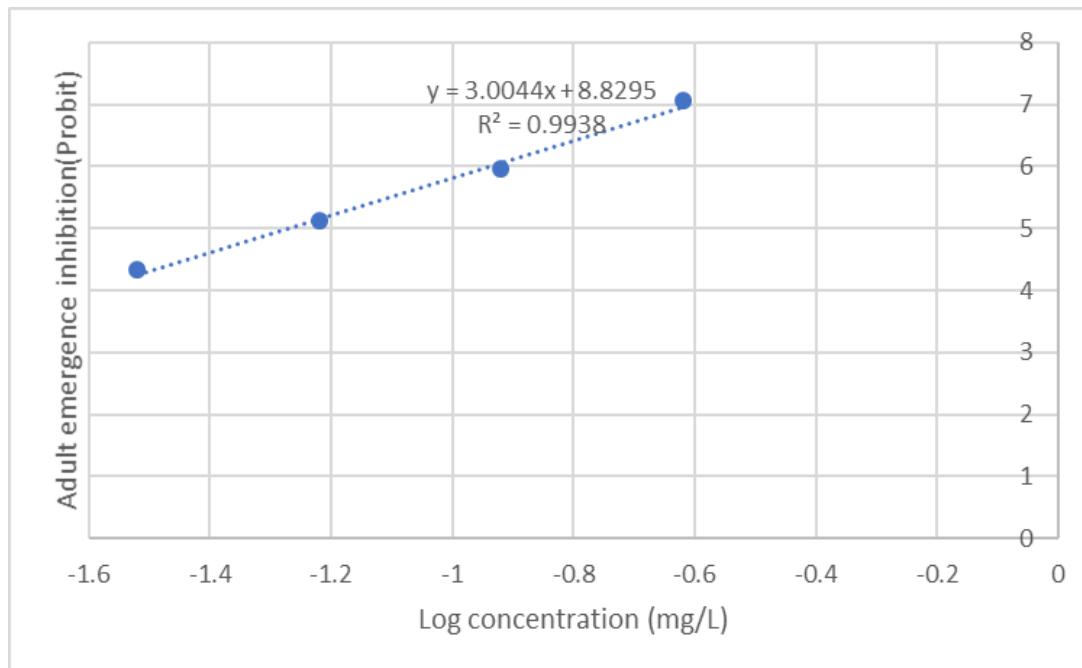
target insects (8, 9). It is essential to develop new chemical products that are less toxic, less persistent and safer for humans and the environment (10). Compounds that interfere with metabolic pathways, such as chitin synthesis, have garnered significant interest (11). Insect growth regulators (IGRs), which target specific physiological processes during normal development (12), are considered selective for target species and environmentally friendly (13, 14). Diflubenzuron (DFB) is an IGR that inhibits chitin synthesis and affects all larval and immature stages of the mosquito. It is an

effective tool for controlling disease vectors and an encouraging alternative to traditional insecticides (15, 16). DFB kills larvae during molting because mosquitoes cannot shed their old cuticle; those that survive die at the pupal stage or during adult emergence (17, 18). The WHO has recommended DFB for controlling container-breeding mosquitoes (19). Dengue fever has emerged as a major public health concern in South Asia (20), with Pakistan currently experiencing one of its most significant outbreaks in recent years (21, 22). Given the extensive cross-border movement, trade, and tourism between Pakistan and Iran, there is a growing risk of disease spread in Iran, particularly in provinces such as Sistan and Baluchestan, where more than 1000 dengue cases have been reported. This province shares ecological and climatic characteristics with dengue-endemic regions of Pakistan. In addition, approximately 255 confirmed dengue cases have also been documented in Hormozgan Province, underscoring the expanding geographic distribution of the disease in southern Iran (23). This highlights the need for more effective vector control measures in Iran.

Therefore, identifying effective doses of chemical agents for this invasive species is crucial for vector control. This is the first study to determine the effective concentration of DFB needed to prevent the emergence of *Ae. aegypti* larvae from the Hormozgan Province strain through laboratory bioassays, providing region-specific EI_{50} and EI_{90} values to inform targeted vector control strategies in a high-risk area for dengue transmission.

Materials and Methods

This experimental study was conducted from March to May 2025 in Hormozgan Province, southern Iran, under controlled laboratory conditions. For mosquito rearing, a colony of adult *Ae. aegypti* was obtained from the insectarium of the Bandar Abbas Health Education and


Research Station, which maintains a recently field-collected strain. This strain was maintained in a rearing cage (50 × 50 × 50 cm) with access to a 10% water-sugar solution via cotton wicks. Adult females were blood-fed on a rabbit twice weekly. To produce larvae, eggs from the colony were submerged in plastic trays with water after a dry period until they hatched and reached the 3rd and 4th instar larvae. The experiment was conducted at 27±2 °C, 65–75% RH and a 12:12 hour light: dark photoperiod in the insectary.

Testing of DFB was conducted following the World Health Organization's standard procedure for determining 50% and 90% adult emergence inhibition (EI_{50} and EI_{90}) (24). For the bioassays, formulations of DFB WP25% (Melli Shimi Keshavarz Company, Iran) were used. World Health Organization Pesticide Evaluation Scheme (WHOPES) recommends a dosage of 0.02–0.25 mg/L for WP formulations of this compound to control mosquito larvae (19, 25, 26). To determine the variation of EI_{90} concentration, late 3rd or early 4th instar larvae were exposed to DFB dilutions ranges 0.03, 0.06, 0.12 and 0.24 mg/L. For each concentration and the control, three replicates were conducted, with each replicate containing 20 *Ae. aegypti* larvae, resulting in a total of 60 larvae per concentration based on availability. For each replicate, 20 larvae were placed in 25 mL of dechlorinated water for one hour to acclimate. The larvae were then transferred to a 250 mL glass beaker containing 1 mL of each test solution and 74 mL of dechlorinated water. A small amount of larval food was added to each beaker every two days to prevent cannibalism. The controls were set up with dechlorinated water without DFB. Adult emergence inhibition (EI) was calculated based on the proportion of emerged adults in each treatment relative to the control group. As adult emergence in the control group exceeded 95%, no correction for control mortality was applied. The emergence inhibition percentage (EI %) for each concentration was cal-

culated based on the number of moribund and dead larvae and pupae, which were considered “affected.” Only mosquitoes that emerged completely free of exuviae were counted as alive (24). The experiment was checked every two to three days and stopped when all adults emerged in the controls. Adult emergence inhibition data were analyzed using probit analysis in SPSS software (version 26, IBM Corp.) to estimate the DFB concentrations causing 50% and 90% inhibition of adult emergence (EI_{50} and EI_{90}), along with their corresponding 95% confidence intervals. The significance of the dose–response relationship was assessed based on the probit regression model. A regression line was plotted to illustrate the relationship between diflubenzuron concentration and the percentage of emergence inhibition of *Ae. aegypti* larvae. The goodness-of-fit of the model and the presence of heterogeneity in the response data were evaluated using a chi-square goodness-of-fit test. A P -value < 0.05 was considered statistically significant.

Results

The inhibition of emergence concentrations of DFB in *Ae. aegypti* larvae were estimated using Probit analysis, with values shown in Table 1. In the control group, more than 95% of adults emerged. According to Table 1, increasing DFB doses significantly enhanced adult emergence inhibition as demonstrated by probit dose–response analysis ($P < 0.001$). Dose–response tests determined the emergence inhibitory concentrations for DFB in *Ae. aegypti* larvae. Probit analysis revealed that the EI_{50} and EI_{90} were 0.053 mg/L and 0.146 mg/L, respectively (Fig. 1). Concentrations between 0.03 and 0.24 mg/L DFB caused reduced movement, slow S-shaped movements, and unresponsiveness to light or touch in larvae. The goodness-of-fit chi-square test ($P = 0.775$) confirmed the suitability of the probit regression model. The P -value greater than 0.05 indicates the absence of significant heterogeneity in the dose–response data, validating the reliability of the estimated confidence limits.

Fig. 1. Percentage emergence inhibition of *Aedes aegypti* larvae (late 3rd/early 4th instar) treated with various concentrations of diflubenzuron WP25%, at laboratory conditions in Bandar Abbas, Iran, 2025

Table 1. Emergence inhibition of *Aedes aegypti* larvae exposed to various concentrations of diflubenzuron at laboratory conditions in Bandar Abbas, Iran, 2025

Concentration (mg/L)	Inhibition (%)	Statistical parameters			
		EI ₅₀ (95%CI) (mg/L)	EI ₉₀ (95%CI) (mg/L)	Slope \pm SE	X ²
0.24	98				
0.12	83				
0.06	55	0.053 (0.044–0.062)	0.146 (0.119–0.197)	2.91 \pm 0.34	0.510 (p<0.001)
0.03	25				
Control	0				

Abbreviation: CI, 95% confidence interval; EI, emergence inhibition 50 and 90 (mg/L); SE, standard error. p< 0.05.

Discussion

Today, vector control strategies focus on using environmentally safe chemicals that are harmless to non-target organisms. IGRs, as toxic chemicals with a specific mode of action, have proven to be promising tools for controlling mosquitoes (27, 28). Monitoring the effective dose of DFB on *Ae. aegypti* is essential before implementing control measures. In this study, the chitin synthesis inhibitor DFB was tested against late instar larvae of *Ae. aegypti* mosquitoes of the Hormozgan strain. The findings show that DFB exhibited high emergence inhibition activity against late instar larvae of *Ae. aegypti*. The EI₅₀ and EI₉₀ values were estimated at 0.053 and 0.146 mg/L, respectively, demonstrating effective activity at relatively low concentrations. As DFB concentration increased, mortality significantly rose, reaching 98% at 0.24 mg/L, nearly matching the EI₉₀ threshold, while the lowest mortality (25%) was observed at 0.03 mg/L. Larvae at sublethal concentrations displayed reduced swimming ability and no response to tactile or light stimuli, consistent with previous data on DFB-induced disruption of cuticular and epithelial development in mosquitoes (29). The EI values obtained in our study, while lower than the LC values reported by Montaño-Reyes et al. (30), were comparable to the LC values reported by Silva et al. (31) and the EI values reported by Fansiri et al. (32),

Sankar et al. (33) and Seccacini et al. (34). The EI values obtained here were lower than the reported lethal concentrations (LC₅₀= 0.23 mg/L, LC₉₀= 0.47 mg/L) by Montaño-Reyes et al. (31), but higher than those in studies using optimized formulations or synergistic combinations. In Uberlândia, Minas Gerais, southeastern Brazil, the LC₅₀ and LC₉₅ of DFB were reported as 0.00519 and 0.01224 mg/L, respectively, causing high mortality across all larval stages of *Ae. aegypti* mosquitoes (31). An EI₅₀ was reported as 0.00241 mg/L (32), while lower values (0.37–0.63 µg/L) were effective against both laboratory and field strains, with emergence inhibition ranging from 9.1% to 100% at a concentration of 16 µg/L (33). Variations in the purity of the active ingredient, formulation types, larval strain susceptibility and experimental conditions largely explain these differences. One study noted that formulation differences affected efficacy, with EC formulations showing lower EI₅₀ values compared to technical DFB, with an EI₅₀ of 1.59 µg/L, emphasizing the importance of formulation chemistry in determining biological effectiveness (34).

The World Health Organization recommends DFB at concentrations up to 0.25 mg/L for drinking water applications (19), making it acceptable for local communities as it causes no noticeable odor or turbidity. This study

confirms that, within this range, mosquito emergence can be significantly reduced, supporting the suitability of this compound for operational programs. Previous research indicates that sublethal DFB concentrations reduce mosquito reproductive potential, including egg production and hatching rates (29). Combined with larval mortality, this can significantly decrease vector populations. Previous studies also note that adjuvants like verapamil may increase efficacy, offering promising options for dose optimization and cost savings in large-scale interventions (33). A study evaluating the toxicity of DFB on *Aedes* larvae from breeding sites at a university in Lagos, Nigeria, found the highest EI ($\geq 90\%$) at a concentration of 0.0001 mg/L after 12 days, while similar inhibition was observed after 8 days at 0.005 mg/L. The DFB residue in water decreased over time, indicating its stability and lack of toxicity to non-target organisms, making it ideal for controlling mosquito larvae (35). When comparing the biological effects of two IGRs, DFB was more effective than pyriproxyfen by a factor of 11.4 (36).

The resistance status of a wild *Ae. aegypti* population from Martinique (Vauclin) to conventional larvicides (*Bacillus thuringiensis* var *israeliensis* [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron and pyriproxyfen) was reported. Despite others, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant *Ae. aegypti* populations (37). The EI₅₀ (0.053 mg/L) and EI₉₀ (0.146 mg/L) values obtained for the *Ae. aegypti* Hormozgan strain falls well within the WHO-recommended concentration range of 0.02–0.25 mg/L for diflubenzuron in mosquito control. This indicates that the Hormozgan strain is highly susceptible to diflubenzuron, supporting its potential as an effective larvicide for regional vector control programs. These findings provide a clear benchmark for public health offi-

cials to implement diflubenzuron at WHO-recommended doses, ensuring both efficacy and safety in community settings. Despite the proven effectiveness of DFB, reports of reduced susceptibility in *Ae. aegypti* populations (38, 39) highlight the need for ongoing resistance monitoring. Developing rotation strategies that combine DFB with other IGRs or insecticides can reduce selection pressure and improve operational efficiency.

This study was conducted under controlled laboratory conditions that do not fully simulate the natural habitats of *Ae. aegypti*, including environmental factors. Potential interactions between DFB and other control agents or natural predators were not investigated. The research focused on a single mosquito species within one geographic location, limiting its relevance to other species or regions. Future studies should assess the effectiveness of DFB in semi-field and field settings to better understand its practical application in integrated vector management. Due to the limited availability of larvae during the experimental period, the study used a total of 60 larvae per concentration. Although this sample size was sufficient for preliminary estimation of EI₅₀ and EI₉₀ values, it is lower than the number recommended by WHO guidelines, which may have reduced the statistical precision of the results. To increase the statistical precision and generalizability of emergence inhibition (EI) estimates, future bioassays should follow WHO recommendations by using at least four replicates of 25 larvae per concentration (100 larvae per concentration). Additional research is needed to explore long-term residual activity, resistance development and potential synergistic effects when these compounds are combined with other larvicides or biological agents. Moreover, evaluating ecological impacts on non-target organisms and conducting cost-effectiveness analyses would provide valuable insights for public health decision-makers.

Conclusion

This study demonstrated that DFB is an effective IGR against *Ae. aegypti* larvae, significantly increasing mortality during molting. The results confirm the potential of DFB as a reliable larvicide at WHO-recommended concentrations for drinking water. The high effectiveness of DFB at low doses makes it a promising option for mosquito control programs. Based on these findings, integrating diflubenzuron into Iran's vector control programs, particularly in high-risk areas like Hormozgan Province, conducting regular resistance monitoring to ensure sustained efficacy, and implementing rotational strategies with other insect growth regulators or larvicides to mitigate resistance development are recommended. Future research should explore field application across different ecological settings, its persistence in natural environments and its compatibility with other vector control strategies.

Acknowledgements

The authors are thankful to the staff of Bandar Abbas Health Education and Research Station.

Ethical Considerations

This study was conducted as part of the student's thesis and was approved by the Ethics Committee of Tehran University of Medical Sciences under ethical approval number: IR.TUMS.SPH.REC.1402.247.

Conflict of Interest Statement

The authors declare that there is no conflict of interest.

References

1. Ferraguti M (2024) Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases. *Infect Dis.* 56(9): 685–696.
2. Yanase T, Otsuka Y, Doi K, Tabaru Y, Arserim SK, Sasaki H, Ozbel Y, TOz S, Ueda T, Tsuji N, Amoh Y, Sanjoba C, Cetin H, Hayashida K (2024) Other medically important vectors. In: Sawabe K, Sanjoba C, Higa Y (Eds): *Medical Entomology in Asia, Entomology Monographs*, Vol. 1. Springer, Singapore, pp. 149–230.
3. Aghayan SK, Ramezani R, Jafari M, Bahrami S (2024) Mosquitoes as dangerous intermediaries: communication bridges between these insects and human health. *Int J Travel Med Glob Health.* 12(2): 64–74.
4. Tyagi BK, Sarkar M, Kandasamy C, Bhattacharya S (2025) Mosquitoes as Vectors, Pests, and Allergenics. In: Tyagi BK (Ed): *Mosquitoes of India*. CRC Press, Boca Raton, USA, pp. 173–190.
5. Herath JMK, De Silva WPP, Weeraratne TC, Karunaratne SP (2024) Breeding habitat preference of the dengue vector mosquitoes *Aedes aegypti* and *Aedes albopictus* from urban, semiurban and rural areas in Kurunegala District, Sri Lanka. *J Trop Med.* 2024(1): 4123543.
6. Mantilla-Granados JS, Montilla-López K, Sarmiento-Senior D, Chapal-Arcos E, Velandia-Romero ML, Calvo E, Morales CA, Castellanos JE (2025) Environmental and anthropic factors influencing *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae), with emphasis on natural infection and dissemination: Implications for an emerging vector in Colombia. *PLoS Negl Trop Dis.* 19(4): e0012605.
7. Seid M, Aklilu E, Negash Y, H. Alemayehu D, Melaku K, Mulu A, Animut A (2025) Resting habitat, blood meal source and viral infection rate of *Aedes aegypti* (Diptera: Culicidae) in the Southern Afar Re-

gion of Ethiopia. *BMC Infect Dis.* 25(1): 346.

8. Garud A, Pawar S, Patil MS, Kale SR, Patil S (2024) A scientific review of pesticides: Classification, toxicity, health effects, sustainability and environmental impact. *Cureus.* 16(8): e67945.
9. Zhou W, Li M, Achal V (2025) A comprehensive review on environmental and human health impacts of chemical pesticide usage. *Emerg Contam.* 11(1): 100410.
10. Barathi S, Sabapathi N, Kandasamy S, Lee J (2024) Present status of insecticide impacts and eco-friendly approaches for remediation-a review. *Environ Res.* 240 (1): 117432.
11. Kaur M, Nagpal M, Dhingra GA, Rathee A (2024) Exploring chitin: novel pathways and structures as promising targets for biopesticides. *Z Naturforsch C.* 79(5-6): 125–136.
12. Kaur T, Kumar A, Arya H, Kumar (2025) A review on herbal nanoemulsions as larvicides, adulticides and growth inhibitors against mosquitoes. *Int J Entomol Res.* 10(7): 54–60.
13. Araujo SHC, Salinas Jimenez LG, Corrêa MJM, Bohorquez Zapata VL, Oliveira MSS, Fernandes JS, Gomes JM, Aguiar RWS, Santos GR, Valbon WR, Oliveira EE (2025) Diflubenzuron did not affect the abilities of the backswimmer *Buenoa tarsalis* to survive and prey upon larvae of *Aedes aegypti*. *Insects.* 16(4): 435.
14. Reshma V, Manogem E (2024) Effects of flufenoxuron on the male reproductive development of *Spodoptera mauritia* Boisduval (Lepidoptera: Noctuidae). *Phytoparasitica.* 52(4): 74.
15. Giatropoulos A, Bellini R, Pavlopoulos DT, Balatsos G, Karras V, Mourafetis F, Papachristos DP, Karamaouna F, Carrieri M, Veronesi R, Haroutounian SA, Michaelakis A (2022) Efficacy evaluation of oregano essential oil mixed with *Bacillus thuringiensis israelensis* and diflubenzuron against *Culex pipiens* and *Aedes albopictus* in road drains of Italy. *Insects.* 13(11): 977.
16. Micocci M (2024) Advancements in knowledge and approaches towards pyrethroid-free control of mosquitoes, vectors of arboviruses. [PhD dissertation]. Faculty of Pharmacy and Medicine, Sapienza University of Rome (La Sapienza), Italy.
17. Chu D, Xu S, Li X, Li H, Miao X, An S, Guan R (2023) Combination of diflubenzuron and RNAi technology to improve the control effect of *Helicoverpa armigera*. *Entomol Gen.* 44(1): 223–232.
18. Valentina M, Franco L, Tiziana C, Valentina L, Sandra U, Romeo B, John V, Daniele P (2025) Comparative transcriptomics reveals different profiles between diflubenzuron-resistant and-susceptible phenotypes of the mosquito *Culex pipiens*. *Pest Manag Sci.* 81(6): 3370–3377.
19. World Health Organization (2022) WHO Guidelines for drinking-water quality. WHO, Geneva.
20. Urmi TJ, Mosharrafa RA, Hossain MJ, Rahman MS, Kadir MF, Islam MR (2023) Frequent outbreaks of dengue fever in South Asian countries-A correspondence analyzing causative factors and ways to avert. *Health Sci Rep.* 6(10): e1598.
21. Tabassum S, Naeem A, Nazir A, Naeem F, Gill S, Tabassum S (2023) Year-round dengue fever in Pakistan, highlighting the surge amidst ongoing flood havoc and the COVID-19 pandemic: a comprehensive review. *Ann Med Surg (Lond).* 85(4): 908–912.
22. Majeed S, Akram W, Sufyan M, Abbasi A, Riaz S, Faisal S, Binyameen M, Bashir M, Hassan S, Zafar S, Kucher O, Piven E, Kucher O (2025) Climate change: A major factor in the spread of *Aedes aegypti* (Diptera: Culicidae) and its associated Dengue virus. *Insects.* 16(5): 513.
23. Jamal MK, Sanaei B, Naderi M, Past V, Abadi SHA, Khazaei R, Esmaeili A, Sadrizadeh S, Moghimi Sh, Ghiyasi Z

(2025) Investigating the recent outbreak of dengue fever in Iran: a systematic review. *Egypt J Intern Med.* 37(1): 1–21.

24. World Health Organization (2016) Monitoring and Managing Insecticide Resistance in *Aedes* mosquito Populations: interim guidance for entomologists. WHO, Geneva.

25. World Health Organization (2006) Pesticides and their application for control of vectors and pests of public health importance. WHO, Geneva.

26. World Health Organization (2017) Reports of the WHOPES Working Group Meetings. WHO, Geneva.

27. Rahman AU, Khan I, Usman A, Khan H (2024) Evaluation of insect growth regulators (IGRs) as biological pesticides for control of *Aedes aegypti* mosquitoes. *J Vector Borne Dis.* 61(1): 129–135.

28. Sankar M, Kumar S (2023) A systematic review on the eco-safe management of mosquitoes with diflubenzuron: an effective growth regulatory agent. *Acta Ecol Sin.* 43(1): 11–19.

29. Fournet F, Sannier C, Monteny N (1993) Effects of the insect growth regulators OMS 2017 and diflubenzuron on the reproductive potential of *Aedes aegypti*. *J Am Mosq Control Assoc.* 9(4): 426–430.

30. Montaño-Reyes A, Llanderal-Cázares C, Valdez-Carrasco J, Miranda-Perkins K, Sánchez-Arroyo H (2019) Susceptibility and alterations by diflubenzuron in larvae of *Aedes aegypti*. *Arch Insect Biochem Physiol.* 102(2): 21604.

31. Silva JJ, Mendes J (2007) Susceptibility of *Aedes aegypti* (L) to the insect growth regulators diflubenzuron and methoprene in Uberlândia, State of Minas Gerais. *Rev Soc Bras Med Trop.* 40(6): 612–616.

32. Fansiri T, Pongsiri A, Khongtak P, Nitatsukprasert C, Chittham W, Jaichapor B, Pathawong N, Kijchalao U, Tiangtrong S, Singkhaimuk P, Ponlawat A (2022) The impact of insect growth regulators on adult emergence inhibition and the fitness of *Aedes aegypti* field populations in Thailand. *Acta Trop.* 236: 106695.

33. Sankar M, Yadav D, Kumar S (2024) Evaluation of diflubenzuron-verapamil combination strategy for eco-safe management of *Aedes aegypti*. *Front Physiol.* 15: 1476259.

34. Seccacini E, Lucia A, Harburguer L, Zerba E, Licastro S, Masuh H (2008) Effectiveness of pyriproxyfen and diflubenzuron formulations as larvicides against *Aedes aegypti*. *J Am Mosq Control Assoc.* 24 (3): 398–403.

35. Akinwunmi M, Adetoro F, Usman P, Aboderin J (2025) Toxicity of diflubenzuron on juveniles of African brackish water shrimp from lagoon coastline and mosquito larvae from breeding places in a tertiary institution in Lagos, Nigeria. *J Appl Sci Environ Manag.* 29(4): 1229–1236.

36. Kamal HA, Khater EI (2010) The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito *Aedes aegypti*. *J Egypt Soc Parasitol.* 40(3): 565–574.

37. Marcombe S, Darriet F, Agnew P, Etienne M, Yp-Tcha MM, Yébakima A, Corbel V (2011) Field efficacy of new larvicide products for control of multi-resistant *Aedes aegypti* populations in Martinique (French West Indies). *Am J Trop Med Hyg.* 84(1): 118–126.

38. Francis S, Crawford J, McKenzie S, Campbell T, Wright D, Hamilton T, Huntley-Jones S, Spence S, Belemvire A, Alavi K, Gutierrez CT (2020) Comparative toxicity of larvicides and growth inhibitors on *Aedes aegypti* from select areas in Jamaica. *R Soc Open Sci.* 7(3):192041.

39. Belinato TA, Valle D (2015) The impact of selection with diflubenzuron, a chitin synthesis inhibitor, on the fitness of two Brazilian *Aedes aegypti* field populations. *PLoS One.* 10(6):e0130719.