Original Article

Effect of D-Allethrin Aerosol and Coil to the Mortality of Mosquitoes


Background: Commercial insecticides were widely used by communities to control the mosquito population in their houses. D-allethrin is one of insecticide ingredients widely distributed in two different concentrations namely 0.15% of aerosol and 0.3% of coil formulations. We aimed to understand the mortality of indoor mosquitoes after being exposed to d-allethrin 0.15% (aerosol) and 0.3% (coil) formulations.Methods: This quasi-experiment study applied the posttest-only comparison group design. The aerosol and coil d-al­lethrin were used to expose the wild mosquitoes in twelve dormitory bedrooms of SMKN Jawa Tengah, a vocational high school belonging to Central Java Provincial Government, on March 2017. The compounds were exposed for 60 min to each bedroom with four-week interval for both of formulations. The knockdown mosquitoes were collected into a plastic cup and delivered to the laboratory for 24h holding, morphologically species identification and mortality re­cording. History of insecticide use in the dormitory was recorded by an interview with one student in each bedroom. Data were statistically analyzed with independent sample t-test and Mann-Whitney.Results: As many as 57 knockdown mosquitoes belonging to three species were obtained namely Culex fuscocephala, Cx. quinquefasciatus and Aedes aegypti with mortality rate of 50.88% after 24h holding. Knockdown and mortality of mosquitoes were significantly different based on d-allethrin formulations. D-allethrin concentrations were not effective for controlling Culex mosquitoes but effective for Ae. aegypti.Conclusion: Further efficacy of d-allethrin 0.15% aerosol to eradicate Ae. aegypti is necessary to be conducted in sup­porting the Dengue vector control.
1. Sarwar M (2015) Insect-Borne Disease Transmitted by Some Important Vectors of Class Insecta Hurtling Public Health. Int J Bioinform Biomed Enggin. 1(3): 311–317.
2. Singh N, Shukla S, Gupta V, Tandia N, Singh P (2015) Mosquito borne zoonotics disease. Livest Sci. 6: 65–72.
3. Leta S, Beyene TJ, Clercq EMD, Amenu K, Kraemer MUG, Revie CW (2018) Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 67: 25–35.
4. Gleave K, Cook D, Taylor MJ, Reimer LJ (2016) Filarial infection influences mos-quito behaviour and fecundity. Sci Rep. 6: 36319.
5. Thongsripong P, Green A, Kittayapong P, Kapan D, Wilcox B, Bennet S (2013) Mosquito Vector Diversity Across Habitats in Central Thailand Endemics for Dengue and Other Arthropod-Borne Disease. PLoS Negl Trop Dis. 7(10): e2507.
6. Micheal C (2014) Abundance of Indoor Resting Mosquito Populations And Plasmodium FalciparumInfection of Anopheles Spp In Settlements Around The Zaria Dam, Zaria, Kaduna State. Nigeria: Department of Biological Science Faculty of Science, Ahmadu Bello University. Available at: http://kubanni.abu.edu.ng:8080/jspui/handle/123456789/6296.
7. Islamiyah M, Leksono SA, Gama PZ (2013) Mosquitoes distribution and composition in Mojokerto region (in In-donesian: Distribusi dan Komposisi Nyamuk di Wilayah Mojokerto). Jurnal Biotropika. 1(2): 80–85.
8. Sayono S, Nurullita U, Sumanto D, Handoyo W (2017) Altitudinal Distribu-tion of Aedes Indices during dry season in the Dengue endemic area of Central Java, Indonesia. Ann Parasitol. 63(3): 213–221.
9. Hendri J, Kusnandar AJ, Astuti EP ( 2016) Identification of the bioactive compound and the use of antimosquito insecticide as well as the Dengue vector resistance to organophosphate in the three Dengue endemic cities in Banten Province (in Indonesian: Identifikasi Jenis Bahan Aktif dan Penggunaan Insektisida Antinyamuk serta Kerentanan Vektor DBD terhadap Or-ganofosfat pada Tiga Kota Endemis DBD di Provinsi Banten). Aspirator. 8(2): 77–86.
10. Prasetyowati H, Astuti EP, Ruliansyah A (2016) Household insecticide use in con-trolling Aedes aegypti population in the Dengue endemic areas, East Jakarta (in Indoensian: Penggunaan Insektisida Rumah Tangga dalam Pengendalian Populasi Aedes aegypti di Daerah En-demis Demam Berdarah Dengue (DBD) di Jakarta Timur). Aspirator. 8(1): 29–36.
11. Titiek Siti Yuliani TS, Triwidodo H, Mudikdjo K, Panjaitan NK, Manuwoto S (2011) Pesticide use behavior: case study of residential pest control in urban settlement Jakarta (in Indonesian: Penggunaan Pestisida: Studi Kasus Pen-gendalian Hama Permukiman di Per-mukiman Perkotaan DKI Jakarta). Fo-rum Pascasarjana. 34(23): 195–212.
12. Sanchez-Bayo F, Tennekes HA, Goka K. Impact of Systemic Insecticides on Or-ganisms and Ecosystems. In: Insecti-cides-Development of Safer and More Effective Technologies. Intech Open.
13. Doung TT, Dung NV, Chinh VD, Trung HD (2016) Mapping Insecticide Resistance in Dengue Vectors in the Northern Vietnam 2010–2013. Vector Biol J. 1(1): 1–6.
14. Marcombe S, Poupardin R, Mathieu RB, Pocquet N, Riaz MA, David JP, Se’lior S, Darriet F, Reynaud S, Ye’bakima A, Corbel V, Chandre F (2012) Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Envi-ronmental Factors. PLoS One. 7(2): e30989.
15. Ikawati B, Sunaryo, Widiastuti D (2015) Map of Aedes aegypti (Linn.) suscepti-bility status to Cypermethrin and Mala-thion insecticide in Central Java. (in In-donesian: Peta Status Kerentanan Aedes aegypti (Linn.) Terhadap Insektisida Cy-permethrin Dan Malathion Di Jawa Ten-gah). Aspirator. 7(1): 23–28.
16. Sayono S, Hidayati APN, Fahri S, Su-manto D, Dharmana E, Hadisaputro S, Asih PBS, Syafruddin D (2016) Distri-bution of Voltage-Gated Sodium Chan-nel (Nav) Alleles among the Aedes ae-gypti Populations In Central Java Prov-ince and Its Association with Resistance to Pyrethroid Insecticides. PLoS One. 11(3): e0150577.
17. Mustafa H, Jastal J, Gunawan G, Risti R (2016) Susceptibility status determina-tion of Anopheles barbirostris mosqui-toes to Bendiocarb, Etofenprox, dan Lambdacyhalothrin insecticides in Tojo Una-una districts, Central Sulawesi. (in Indonesian: Penentuan Status Kerentan-an Nyamuk Anopheles barbirostris ter-hadap Insektisida Bendiocarb, Etofenprox, dan Lambdacyhalothrin di Kabupaten Tojo Una-una, Sulawesi Tengah). Media Libtangkes. 26 (2): 93–98.
18. Scott JG, Yoshimizu MH, Kasai S (2014) Pyrethroid resistance in Culex pipiens mosquitoes. Pestic Biochem Physiol. 120: 68–76.
19. Yadouléton A, Badirou K, Agbanrin R, Jöst H, Attolou R, Srinivasan R, Pa-donou G, Akogbeto M (2015) Insecticide Resistance Status in Culex quinquefasciatus in Benin. Parasit Vectors. 8(7): 1–6.
20. Chakim I, Sayono S, Astuti R (2017) High Levels of Resistance in A Culex quin-quefasciatus Population to the Insecti-cide Permethrin in Filariasis Endemic Areas in Central Java. Makara J Sci. 21(4): 149–154.
21. Agossa FR, Gnanguenon V, Anagonou R, Azondekon R, Aizoun N, Sovi A, Oke-Agbo F, Sezonlin M, Akogbeto MC (2015) Impact of Insecticide Resistance on the Effectiveness of Pyrethroid-Based Malaria Vectors Control Tools in Benin: Decreased Toxicity and Repel-lent Effect. PLoS One. 10(12): e0145207.
22. Ghorbani F, Vatandoost H, Hanafi-Bojd AA, Abai MR, Nikoobar H, Enayati AA (2018) High Resistance of Vector of West Nile Virus, Culex pipiens Linnaeus (Diptera: Culicidae) to Different In-secticides Recommended by WHO in Northern Iran. J Arthropod-Borne Dis. 12(1): 24–30.
23. Khadri MS, Kwok KL, Noor MI, Lee HL (2009) Efficacy of commercial house-hold insecticide aerosol sprays against Aedes aegypti (Linn.) under simulated field conditions. Southeast Asian J Trop Med Public Health. 40(6): 1226–1234.
24. Chin AC, Chen CD, Low VL, Lee HL, Azidah AA, Lau KW, Sofian-Azirun M (2017) Comparative efficacy of commer-cial mosquito coils against Aedes aegypti (diptera: Culicidae) in Malaysia: a na-tionwide report. J Econ Entomol. 110(5): 2247–2251.
25. Walter Reed Biosystematics Unit. Arthro-pod Identification Keys. Available at: http://www.wrbu.org/aors/ pacom _Keys.html
26. Astuti EP, Ipa M, Wahono T, Riandi U (2012) Density of filariasis vector-sus-pected mosquitoes in Panumbangan vil-lage-Ciamis District, Jalaksana village-Kuningan District, and Batukuwung vil-lage-Serang District. (In Indonesian: Kepadatan Nyamuk Tersangka Vektor Filariasis di Desa Panumbangan, Kabu-paten Ciamis, Desa Jalaksana Kabupaten Kuningan dan Batukuwung Kabupaten Serang). Jurnal Ekologi Kesehatan. 11(4): 342–352.
27. Pemba D, Kadangwe C (2012) Mosquito Control Aerosols’ Efficacy Based on Pyrethroids Constituents. In: Insecti-cides-Advances in Integrated Pest Man-agement. Edited by Dr Farzana Perveen. ISBN: 978-953-307-780-2, InTech, Available at: http://www.intechopen.com/books/ in-secticides-advances-in-integrated-pest-management/ mosquito-control-aerosols-efficacy-based-on-pyrethroids-constituents
28. Kudom AA, Mensah BA, Nunoo J (2013) Assessment of anti-mosquito measures in households and resistance status of Culex species in urban areas in southern Ghana: Implications for the sustainabil-ity of ITN use. Asian Pac J Trop Med. 6(11): 859–864.
29. Chen CD, Chin AC, Lau KW, Low VL, Lee HL, Lee PKY, Azidah AA, Sofian-Azirun M (2018) Bioefficacy Evaluation of Commercial Mosquito Coils Contain-ing Metofluthrin, d-Allethrin, d-Trans Allethrin, and Prallethrin Against Aedes albopictus (Diptera: Culicidae) in Malay-sia. J Med Entomol. 55(6): 1651–1655.
30. Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Lau KW, Suana IW, Harmonis, Syahputra E, Razak A, Low VL (2018) Efficacy of Mosquito Coils: Cross-re-sistance to Pyrethroids in Aedes aegypti (Diptera: Culicidae) From Indonesia. J Econ Entomol. 111(6): 2854–2860.
31. El-garja FMA, Avicora SW, Wajidia MFF, Jaalb Z (2015) Comparative efficacy of Spatial Repellents Containing D-alle-thrin and D-trans Allethrin Against The Major Dengue Vector Aedes aegypti (Linnaeus). Asian Biomed. 9(3): 313–320.
32. Mulla MS, Thavara U, Tawatsin A, Kong-Ngamsuk W, Chompoosri J (2001) Mos-quito Burden and Impact on the Poor: Measures and Costs for Personal Protec-tion in some Communities in Thailand. J Am Mosq Control Assoc. 17(3): 153–159.
33. Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, Pyrethrins, Pyrethroids and Insect Sodium Channel. IUBMB Life. 59(3): 151–162.
34. Soderlaund DM (2012) Molecular Mech-anisms of Pyrethroid Insecticide Neuro-toxicity: Recent Advances. Arch Toxi-col. 86(2): 165–181.
35. Chen L, Zhong D, Zhang D, Shi L, Zhou G, Gong M, Zhou H, Sun Y, Ma L, He J, Hong S, Zhou D, Xiong C, Chen C, Zou P, Zhu C, Yan G (2010) Molecular Ecology of Pyrethroid Knockdown Re-sistance in Culex pipiens pallens Mos-quitoes. PLoS One. 5(7): e11681.
36. Day JF (2016) Mosquito Oviposition Be-havior and Vector Control. Insects. 7(4): 65.
37. Azari-Hamidian S (2007) Larval Habitat Characteristics of Mosquitoes of the Genus Culex (Diptera: Culicidae) in Guilan Province, Iran. Iranian J Arthropod-Borne Dis. 1(1): 9–20.
38. Farjana T, Ahmmed MS, Khanom TF, Alam N, Begum N (2015) Surveillance of Mosquitoes Larva at Selected Areas of Mymensingh District in Bangladesh. Bangl J Vet Med. 13(1): 79–88.
39. Alam N, Farjana T, Khanom TF, Labony SS, Islam KR, Ahmmed S, Modal MMH (2015) Prevalence of mosquitoes (diptera: culicidae) in and around Bang-ladesh Agricultural University campus of Mymensingh in Bangladesh. Progres-sive Agriculture. 26: 60–66.
40. Hassan N, Dawood MM (2016) Diversity and Abundance of Mosquitoes (Diptera: Culicidae) in Universiti Malaysia Sabah Campus, Kota Kinabalu, Sabah, Malay-sia. Serangga. 21(2): 79–95.
41. Karmila M, Syahribulan S, Wahid I (2016) Diversity of mosquito species around the campus of Universitas Hasanuddin, Ma-kassar. (In Indonesian: Keanekaragaman Jenis Nyamuk Di Sekitar Kampus Uni-versitas Hasanuddin Makassar). Availa-ble at: http://repository.unhas.ac.id/bitstream /handle/123456789/19237/Jurnal%20Mila%20Karmila%20H41112951.pdf?sequence=1
42. Chen CD, Lee HL, Stella-Wong SP, Lau KW, Sofian-Azirun M (2009) Container survey of mosquito breeding sites in a university campus in Kuala Lumpur, Ma-laysia. Dengue Bull. 33: 187–193.
43. Naz R, Maryam A, Shabnam S (2014) Population Dynamics of Mosquitoes in Various Breeding Habitats at University of Peshawar Campus, Khyber Pu-khtunkhwa Pakistan. J Entomol Zool Stud. 2(2): 189–195.
IssueVol 13 No 3 (2019) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v13i3.1536
D-Alletrin; Insecticide; Culex fuscocephala; Culex quinquefasciatus; Aedes aegypti

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Sayono S, Mudawamah PL, Meikawati W, Sumanto D. Effect of D-Allethrin Aerosol and Coil to the Mortality of Mosquitoes. J Arthropod Borne Dis. 13(3):259-267.