Characterization of Glycoproteins of Native 19kDa C-Terminal Merozoite Surface Protein-1 from Native Antigen of Plasmodium falciparum
Abstract
Background: Plasmodium falciparum is the protozoan parasite which causes malignant malaria of medical concern. Prime candidates for recombinant vaccine development are asexual stage antigens of P. falciparum, for example, merozoite surface proteins (MSP1 and MSP2) not given satisfactory results to date. In this study, the 19kDa C-terminal of MSP1, a vaccine candidate was purified in its native form in the ring stage, and its glycoproteins studied.
Methods: The study was carried out at the Biochemistry Department of Pasteur Institute of Iran in the years 2015–2016. Large scale culture of P. falciparum was performed in vitro with 80% ring stage parasitemia. Isopycnic ultracentrifugation with 36% sucrose and analytical SDS-PAGE on the supernatant and precipitate performed, and the 19kDa antigen was obtained by cutting it from strips of preparative SDS gels. Purified protein was concentrated and analyzed by SDS-PAGE and immunoblotting, using antibodies raised to recombinant C-terminal MSP1.
Results: The purified protein gave a single band of 19kDa antigen as shown by silver staining of SDS-PAGE and a single bond in immunoblotting. Bioinformatics also confirmed the likelihood of the presence of glycans on the antigen.
Conclusion: The presence of N and O-glycoproteins were detected by Q proteome kit. This work was done on the ring stage, and earlier workers confirmed the presence of glycoproteins on MSP1 in the other stages. This glycosylation is present in all stages, and maybe incomplete protection elicited by recombinant MSP1 antigens is due to lack of N and O-glycoproteins.
2. Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M, Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R, Wilkinson AJ, Holder AA, Tate EW (2014) Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem. 6(2): 112–121.
3. von Itzstein M, Plebanski M, Cooke BM, Coppel RL (2008) Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol. 24(5): 210–218.
4. de Macedo CS, Schwarz RT, Todeschini AR, Previato JO (2010) Mendonça-Previato L. Overlooked post-translational modifications of proteins in Plasmodium falciparum: N-and O-glycosylation-a review. Mem Inst Oswaldo Cruz. 105(8): 949–956.
5. Chauhan VS, Yazdani SS, Gaur D (2010) Malaria vaccine development based on mer-ozoite surface proteins of Plasmodium falciparum. Hum vaccin. 6(9): 757–762.
6. Khan AH, Qazi AM, Hoessli DC, Torred Duarte AP, Senaldi G, Qazi MH, Walker-Nasir E, Nasirud-Din (1997) Carbohydrate moiety of Plasmodium falciparum glycoproteins: The nature of the carbohydrate peptide linkage in the MSP2 glycoprotein. Biochem Mol Biol Int. 43(3): 655–668.
7. Berhe S, Gerold P, Kedees MH, Holder AA Schwarz RT (2000) Plasmodium falci-pa¬rum: merozoite surface proteins 1 and 2 are not posttranslationally modified by classical N-or O-glycans. Exp Parasitol. 94(3): 194–197.
8. Hamadeh RM, Jarvis GA, Zhou P, Cotleur AC, Griffiss J (1996) Bacterial enzymes can add galactose alpha 1, 3 to human erythrocytes and creates a senescence-associated epitope. Infect Immun. 64(2): 528–534.
9. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science. 193(4254): 673–675.
10. Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 65 (3): 418–420.
11. Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, Diez A, Bautista JM (2009) Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc. 4(12): 1899–1915.
12. Allen RJ, Kirk K (2004) The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J Biol Chem. 279(12): 11264–11272.
13. Hoessli DC, Poincelet M, Gupta R, Ilangu-maran S, Nasirud-Din (2003) Plasmodium falciparum merozoite surface protein 1: Glycosylation and localization to lowdensity, detergent-resistant membranes in the parasitized erythrocyte. Eur J Biochem. 270(2): 366–375.
14. Dunn MJ (2004) Electroelution of pro-teins from polyacrylamide gels. Protein puri¬fi¬cation Methods Mol Biol. 244: 339–343.
15. Blum H, Beier H, Gross HJ (1987) Im¬proved silver staining of plant proteins, RNA, and DNA in polyacrylamide gels. Electro¬pho¬resis. 8(2): 93–99.
16. Konat G, Offner H, Mellah J (1984) Im-proved sensitivity for detection and quan¬titation of glycoproteins on polyacryla-mide gels. Experientia. 40(3): 303–304.
17. Castellanos-Serra L, Proenza W, Huerta V, Moritz RL, Simpson RJ (1999) Proteome analysis of polyacrylamide gel separated proteins visualized by reversible negative staining using imidazole-zinc salts. Electrophoresis. 20(4–5): 732–737.
18. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 76(9): 4350–4354.
19. Kim WK, Hwang HR, Kim DH, Lee PY, In YJ, Ryu HY, Park SG, Bae KH, Lee SC (2008) Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD 5L and ApoE as potential biomarkers. Exp Mol Med. 40(6): 677–685.
20. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, Duvaud S, Flegel V, Fortier A, Elisabeth Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mo¬staguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40(W1): W597–W603.
21. Zamani Z, Razavi MR, Sadeghi S, Naddaf S, Pourfallah F, Arjmand M, Feizhaddad H, Rad ME, Tameemi M, Assmar M (2009) Sequence diversity of the C-terminal region of Plasmodium falciparum merozoite surface protein 1 in southern Iran. Southeast Asian J Trop Med Public Health. 40(1): 1–9.
22. Yang S, Nikodem D, Davidson EA, Gowda DC (1999) Glycosylation and proteolytic processing of 70kDa C-terminal recombinant polypeptides of Plasmodium falciparum merozoite surface protein 1 expressed in mammalian cells. Glycobiology. 9(12): 1347–1356.
23. Kedees MH, Gerold P, Azzouz N, Blaschke T, Shams-Eldin H, Mühlberger E, Holder AA, Klenk HD, Schwarz RT, Eckert V (2000) Processing and localisation of a GPI-anchored Plasmodium falciparum surface protein expressed by the baculovirus system. Eur J Cell Biol. 79(1): 52–56.
24. Schmidt A, Schwarz RT, Gerold P (1998) Plasmodium falciparum: asexual erythrocytic stages synthesize two structurally distinct free and protein-bound glycosylphosphatidylinositols in a maturation-dependent manner. Exp Parasitol. 88(2): 95–102.
25. Kimura EA, Couto AS, Peres VJ, Casal OL, Katzin AM (1996) N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. J Biol Chem. 271(24): 14452–14461.
26. Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abrahante JE, Subramanian G, Hoffman SL, Abrahamsen MS, Aravind L (2004) Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Res. 14(9): 1686–1695.
27. Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins PW (2005) The diversity of dolichol-linked precursors to Asnlinked glycans likely results from secondary loss of sets of gly-cosyltransferases. Proc Natl Acad Sci USA. 102(5): 1548–1553.
28. Anantharaman V, Iyer LM, Balaji S, Aravind L (2007) Adhesion molecules and other secreted host‐interaction determinants in Apicomplexa: insights from comparative genomics. Int Rev Cytol. 262: 1–74.
29. Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, Dvorin JD, Gubbels MJ, Robertson SD, Steffen M, O'Keefe BR, Robbins PW, Samuelson J (2010) Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryot Cell. 9(2): 228–241.
30. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, Schofield L, Crabb BS (2006) Identification and stoi-chiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 5(7): 1286–1299.
31. Dieckmann-Schuppert A, Bause E, Schwarz RT (1994) Glycosylation reactions in Plasmodium falciparum, Toxoplasma gondii and Trypanosoma brucei brucei probed by the use of synthetic peptides. Bio-chim Biophys Acta Gen Subj. 1199(1): 37–44.
32. Gowda DC, Gupta P, Davidson EA (1997) Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem. 272(10): 6428–6439.
33. Perez-Cervera Y, Harichaux G, Schmidt J, Debierre-Grockiego F, Dehennaut V, Bieker U, Meurice E, Lefebvre T, Schwarz RT (2011) Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study. Amino Acids. 40(3): 847–856.
Files | ||
Issue | Vol 13 No 3 (2019) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/jad.v13i3.1541 | |
Keywords | ||
Merozoite surface protein1; C-terminal 19kDa; Plasmodium falciparum; Glycoproteins |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |