Original Article

Phytochemical Composition and Bioassay on Iranian Teucrium polium Ex-tracts against Anopheles stephensi (Diptera: Culicidae)

Abstract

Background: Anopheles stephensi is an important malaria vector mosquito in Iran and other western Asian countries. In many human communities, plant products have been used traditionally instead of synthetic pesticides for mosquito control due to their minimal hazardous effects. Teucrium polium, known popularly as felty germander, has been intro-duced in Persian Medicine (PM) as an insect repellent from a long time ago.
Methods:
The present study was undertaken to evaluate repellent and larvicidal activity of dichloromethane (DCME-TP) and ethanolic extracts (EE-TP) of T. polium against An. stephensi under laboratory conditions. The possible chemi-cal components of the extracts were also investigated through gas chromatography/mass spectrometry (GC-MS) tech-nique.
Results:
Based on the results, DCME-TP showed better repellent activity than EE-TP with 56.67 and 28.33 % protec-tion, respectively. Larvicidal activity of DCME-TP with 49.41% mortality was also higher than EE-TP (20.24%). The main identified constituents of DCME-TP were long chain alkanes, phenol, aromatic ester, oxaspiro and triterpenoid. While phenolic and aliphatic acid were only the identified components in EE-TP. It is notable that lupeol was detected in DCME of T. polium for the first time.
Conclusion:
DCME-TP can be considered as a new herbal candidate to control An. stephensi mosquitoes. Further stud­ies are required on this extract for the fractionation and identification of the active compounds, and the evaluation of their bioactivity in the laboratory and field.

1. WHO (2022) World Malaria Report 2021. World Health Organization. Geneva, Swit¬zerland. Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022.
2. Azari-Hamidian S, Norouzi B, Har¬bach RE (2019) A detailed review of the mosqui-toes (Diptera: Culicidae) of Iran and their medical and veterinary importance. Acta Tropica. 194: 106–122.
3. Sedaghat MM, Sanei-Dehkordi AR, Abai M, Khanavi M, Mohtarami F, Abadi YS (2011) Larvicidal activity of essential oils of Apiaceae plants against malaria vector, Anopheles stephensi. Iran J Ar-thropod Borne Dis. 5(2): 51–59.
4. Hemingway J (2014) The role of vector control in stopping the transmission of malar¬ia: threats and opportunities. Philos Trans R Soc Lond B Biol Sci. 369(1645): 20130431.
5. WHO (2018) Global report on insecticide resistance in malaria vectors: 2010–2016. World Health Organiza¬tion. Geneva, Swit¬zer¬land. Available at: https://apps.who.int/iris/handle/10665/272533.
6. Bekele D (2018) Review on insecticidal and repellent activity of plant products for malaria mosquito control. Biomed Res Rev. 2(2): 1–7.
7. Tahghighi A, Ravasan NM, Djadid ND, Alipour H, Ahmadvand R, Karimian F, Yousefinejad S (2019) GC–MS analysis and anti–mosquito ac¬tivities of Juni-perus virgini¬ana essential oil against Anopheles stephen¬si (Diptera: Cu-licidae). Asian Pac J Trop Bi¬omed. 9(4): 168–175.
8. Krishnappa K, Dhanasekaran S, Elumalai K (2012) Larvicidal, ovicidal and pupi¬cidal activities of Gliricidia sepium (Jacq.) (Legu¬minosae) against the ma¬larial vec-tor, Anophe¬les stephensi Liston (Cu-licidae: Diptera). Asian Pac J Trop Bio-med. 5(8): 598–604.
9. Khanavi M, Najafi B, Sada SN (2017) Chem¬i¬cal constitute and larvicidal activ-ity of fractions of Ajuga chamaecis-tustomen¬tella plant against malaria vec-tor Anoph¬eles ste¬phensi. J Arthropod Borne Dis. 11(1): 116–123.
10. Vatandoost H, Rustaie A, Talaeian Z, Abai MR, Moradkhani F, Vazirian M, Hadjiakhoon¬di A, Shams-Ardekani MR, Khanavi M (2018) Larvicidal activity of Bu¬nium persicum essential oil and ex-tract against malaria vector, Anopheles stephensi. J Arthropod Borne Dis. 12(1): 85–93.
11. Lame Y, Nukenine EN, Simon Pierre DY, Elijah AE, Esimone CO (2015) Labora-tory evaluations of the fractions efficacy of An¬nona senegalensis (Annonaceae) leaf extract on immature stage develop-ment of malarial and filarial mosquito vectors. J Arthropod Borne Dis. 9(2): 226–237.
12. Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mos-quito larvi¬cides. Indian J Med Res. 135(5): 581–598.
13. Mosaddegh M, Naghibi F (2005) Islamic Republic of Iran. In: Bodeker G, Ong CK, Grundy C, Burford G, Shein K (Eds): WHO Global Atlas of Tradition-al, Com¬plementary and Alternative Medicine, World Health Or¬ganization, center for health develop¬ment, Kobe, Japan, pp. 159–164.
14. Jurjani E (1976) Zakhire Kharazmshahi. Bonyade Farhang-e Iran Publisher, Iran.
15. Aghili A (2009) Makhzan ul-Advia. Rah- e Kamak, Iran.
16. Mozaffarian V (2007) A Dictionary of Ira-nian Plant Names. 5th ed. Frhang Moaser Publisher, Iran.
17. Khani A, Heydarian M (2014) Fumigant and repellent properties of sesquiter-pene-rich essential oil from Teucrium po-lium subsp. capitatum (L.). Asian Pac J Trop Med. 7(12): 956–961.
18. Yadav NP, Rai VK, Mishra N, Sinha P, Bawankule DU, Pal A (2014) A novel ap¬proach for development and charac-terization of effective mosquito repellent cream formu¬lation containing citronella oil. Biomed Res Int. 2014: 786084.
19. Klun JA, Debboun M (2000) A new mod-ule for quantitative evaluation of repel-lent efficacy using human subjects. J Med Ento¬mol. 37(1): 177–181.
20. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organiza¬tion. WHO/CDS/ WHOPES/GCDPP/13. Ge¬neva, Swit-zerland. Available at: https://apps.who.int/iris/handle/10665/69101
21. Yohana R, Chisulumi PS, Kidima W, Tahghighi A, Maleki-Ravasan N, Kwe¬ka EJ (2022) Anti-mosquito properties of Pelargo¬nium roseum (Geraniaceae) and Juniperus virginiana (Cupressaceae) es-sential oils against dominant malaria vec-tors in Africa. Malar J. 2(1): 1-15.
22. Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M (2021) Bioactivities of rose-scented ge-ranium nanoemulsions against the larvae of Anopheles stephensi and their gut bac¬teria. Plos one. 16(2): e0246470.
23. CDC (2013) CDC releases final West Nile virus national surveillance data for 2012. Cen¬ters for Disease Control and Preven-tion. Colo¬rado, United States. Available at: https://www.cdc.gov/westnile/resources/pdfs/wnvguidelines.pdf
24. Keziah EA, Nukenine EN, Danga SPY, Younoussa L, Esimone CO (2015) Creams formulated with Ocimum gratis-simum L. and Lantana camara L. crude extracts and frac¬tions as mosquito repel-lents against Aedes aegypti L.(Diptera: Culicidae). J Insect Sci. 15(1): 45.
25. WHO (2004) WHO specifications and eval¬uations for public health pesticides, Icar¬idin. World Health Organization. Geneva, Switzerland. Available at: https://extranet.who.int/pqweb/sites/default/files/vcp-documents/WHOVC-SP_Icaridin_2004.pdf
26. Popović A, Šućur J, Orčić D, Štrbac P (2013) Effects of essential oil formula-tions on the adult insect Tribolium cas-taneum (Herbst) (Col., Tenebrionidae). J Cent Eur Agric. 14(2): 181–193.
27. Tahghighi A, Ghafari S, Ghanavati S,
Kazemi SHM (2022) Repellency of aer-ial parts of Teucrium polium L. essential oil for¬mulation against Anopheles ste-phensi. Int J Trop Insect Sci. 42(5): 3541–3550
28. Sutthanont N, Choochote W, Tuetun B, Junkum A, Jitpakdi A, Chaithong U, Doungrat Riyong D, Pitasawat B (2010) Chemical composition and larvicidal ac-tivity of edible plant-derived essential oils against the pyrethroid-susceptible and-re¬sistant strains of Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 35: 106–115.
29. Vivekanandhan P, Venkatesan R, Ramkumar G, Karthi S, Senthil-Nathan S, Shiva¬kumar MS (2018) Comparative analysis of major mosquito vectors re-sponse to seed-derived essential oil and seed pod-derived ex¬tract from Acacia nilotica. Int J Enviro Res Public Health. 15(2): 388.
30. Ranchitha B, Umavathi S, Thangam Y, Revathi S (2016) Chemical Constituents and larvicidal Efficacy of Melia azeda-rach L. leaf extract against dengue vec-tor Aedes aegypti L (Diptera: Culicidae). Int J Innov Res Sci Eng Technol. 15: 3060–3070.
31. Prabhavathi O, Yuvarajan R, Natarajan D (2016) Mosquitocidal properties of Oci-mum canum Sims (Lamiaceae) leaf ex-tracts against dengue vector Aedes ae-gypti L. (Diptera: Cu¬licidae). J ento¬mol acarol res. 48: 345–354.
32. Liang DW, Zhang T, Fang HH, He J (2008) Phthalates biodegradation in the envi¬ronment. Appl Microbiol Biotech-nol. 80 (2): 183–198.
33. Ramamurthy V, Krishnaveni S (2014) Larvi¬cidal efficacy of leaf extracts of Heli¬otropium Indicum and Mukia maderaspat¬ana against the dengue fever mosquito vector Ae¬des aegypti. J Ento-mol Zool Stud. 2: 40–45.
34. Babu SM, Tharan B, Dhanasekaran S, Thushimenan S, Kovendan K, Alagar-ma¬lai J (2016) Chemical compositions, antifeedant and larvicidal activity of Pongamia pinnata (L.) against polypha-gous field Pest, Spodop¬tera litura. Int J Zool Invest. 2: 48–57.
35. Karthik S, Suriyaprabha R, Vinoth M, Srither S, Manivasakan P, Rajendran V, Vali¬yaveettil S (2017) Larvicidal, super hydro¬phobic and antibacterial properties of herbal nanoparticles from Acalypha indica for bio¬medical applications. RSC Adv. 7(66): 41763–41770.
36. Zhao F, Wang P, Lucardi RD, Su Z, Li S (2020) Natural sources and bioactivities of 2,4-di-tert-butylphenol and its ana-logs. Tox¬ins. 12(1): 35.
37. Chen Y, Dai G (2015) Acaricidal, repel-lent, and oviposition-deterrent activities of 2, 4-di-tert-butylphenol and ethyl ole-ate against the carmine spider mite Tetranychus cin¬nabarinus. J Pest Sci. 88: 645–655.
38. Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triter¬pene. Cancer lett. 285: 109–115.
39. Duan D, Bu C, Cheng J, Wang Y, Shi G (2011) Isolation and identification of acari¬cidal compounds in Inula japonica (Asterace¬ae). J Econ Entomol. 104: 375–378.
40. Díaz M, Díaz CE, Álvarez RG, González A, Castillo L, González-Coloma A, Seoane G, Rossini C (2015) Differential anti-insect ac¬tivity of natural products isolated from Dodo¬naea viscosa Jacq. (Sapindaceae). J Plant Prot Res. 55: 172–178.
41. de Almeida Alves TM, Nagem TJ, de Carvalho LH, Krettli AU, Zani CL (1997) Antiplasmodial triterpene from Vernonia bra¬siliana. Planta med. 63(6): 554–555.
42. Srinivasan T, Srivastava G, Pathak A, Ba-tra
S, Raj K, Singh K, Puri SK, Kundu B (2002) Solid-phase synthesis and bio-evalua¬tion of lupeol-based libraries as antimalarial agents. Bioorg Med Chem Lett. 12(20): 2803–2806.
43. Ajaiyeoba EO, Ashidi JS, Okpako LC, Hough¬ton PJ, Wright CW (2008) An-tiplas¬modial compounds from Cassia si-amea stem bark extract. Phytother Res. 22(2): 254–255.
44. Spindola KCVW, Simas NK, dos Santos CE, da Silva AG, Romão W, Vanini G, da Silva SRC, Borges GR, de Souza FG (2016) Dendranthema grandiflorum, a hybrid orna¬mental plant, is a source of larvicidal com¬pounds against Aedes ae-gypti larvae. Rev bras farmacogn. 26(3): 342–346.
45. Chandrasekaran R, Seetharaman P, Krish-nan M, Gnanasekar S, Sivaperumal S (2018) Carica papaya (Papaya) latex: a new para¬digm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefas¬ciatus (Diptera: Cu-licidae). 3 Biotech. 8(2): 83.
Files
IssueVol 16 No 2 (2022) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v16i2.11804
Keywords
Larvicidal Repellent Teucrium polium Anopheles stephensi Phytochemical

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghafari S, Tahghighi A, Shamakhte K, Alipour H, Maleki-Ravasan N, Nateghpour M. Phytochemical Composition and Bioassay on Iranian Teucrium polium Ex-tracts against Anopheles stephensi (Diptera: Culicidae). J Arthropod Borne Dis. 2023;16(2):136–147.