Predicting the Potential Distribution of Major Malaria Vectors Based on Climate Changes in Sistan and Baluchistan Province, Southeastern Iran
Abstract
Background: Given the significance of climate change and its substantial effects on mosquitoes’ habitats, this study was aimed to model the spatial distribution of the main malaria vectors in the south east of Iran.
Methods: Several scientific databases between 1980 and 2019 were reviewed to find mosquito species and their spatial information in this area. The archived folders in the center for diseases control and prevention were used to exploit essential data on malaria cases and foci. Three representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5) were chosen to stand for three possible climate scenarios. Finally the potential species distribution of Anopheles stephensi and An. culicifacies s.l. in the 2030s and 2050s horizons were estimated by the Maximum Entropy Model.
Results: So far, a total of 39 mosquito species belonging to the family Culicidae have been reported from the study area. In 2019, the total malaria cases have increased by 91% compared to 2015, as well as a sharp rise than 2018 (249%). In that year, 91% of cases were imported from other countries, which caused 40% increase in the new potential foci than in 2018. The Jackknife test demonstrated the annual mean temperature and precipitation of the coldest quarter with the greatest impact on the environmental suitability of the mentioned two species.
Conclusion: The effect of climate change on the appearance and recurrence of mosquito-borne diseases has been demonstrated in various studies. Collecting further data and conducting investigation on this issue will improve control management, especially for the malaria vectors.
2. Mavian C, Dulcey M, Munoz O, Salemi M, Vittor A Y, Capua I (2018) Islands as hotspots for emerging mosquito-borne viruses: A one- health perspective. Viruses. 11(1):11.
3. World Health Organization (2020) World malaria report 2020: 20 years of global progress and challengesWorld Health Organization. Licence: CC BY-NC-SA 3.0 IGO, Geneva:.
4. Marianne E Sinka, Michael J Bangs, Sylvie Manguin, Yasmin Rubio-Palis, Theeraphap Chareonviriyaphap, Maureen Coetzee, Charles M Mbogo, Janet Hemingway, Anand P Patil, William H Temperley, Peter W Gething, Caroline W Kabaria, Thomas R Burkot, Ralph E Harbach, Simon I Hay (2012) A global map of dominant malaria vectors. Parasit Vectors. 5:69.
5. Vatandoost H, Raeisi A, Saghafipour A, Nikpour F, Nejati J (2019) Malaria situation in Iran: 2002– 2017. Malar J. 18(1):200.
6. Center for diseases control and prevention, Malaria elimination program in Islamic Republic of Iran. Ministry of Health and Medical Education, Tehran (Non published).
7. Azari-Hamidian S, Norouzi B, Harbach RE (2019) A detailed review of the mosquitoes (Diptera: Culicidae) of Iran and their medical and veterinary importance. Acta Trop. 194:106-122.
8. Azari-Hamidian S, Abai MR, Norouzi B(2020) Mansonia uniformis (Diptera: Culicidae), a genus and species new to southwestern Asia, with a review of its medical and veterinary importance.Zootaxa. 4772(2):zootaxa.4772.2.10.
9. Pakdad K, Hanafi-Bojd AA, Vatandoost H, Sedaghat MM, Raeisi A, Salahi Moghaddam A, Rahimi Foroushani A (2017) Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies sl and An. fluviatilis sl in Iran based on maximum entropy model. Acta Trop. 169:93-99.
10. Nejati J, Vatandoost H, Oshghi MA, Salehi M, Mozafari E, Moosa-Kazemi S H(2013) Some ecological attributes of malarial vector Anopheles superpictus Grassi in endemic foci in southeastern Iran. Asian Pac J Trop Biomed. 3(12):1003-8.
11. NejatiJ , Saghafipour A, Vatandoost H, Moosa- Kazemi S H, Motevalli Haghi A, Sanei-Dehkordi A (2018) Bionomics of Anopheles subpictus (Diptera: Culicidae) in a malaria endemic area, Southeastern Iran. J Med Entomol. 55(5):1182-1187.
12. Henri E Z Tonnang, Richard Y M Kangalawe, Pius Z Yanda (2010) Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J. 9:111.
13. Ren Z, Wang D, Ma A, Hwang J, Bennett A, J W Sturrock H, Fan J, Zhang W, Yang D, Feng X, Xia X, Zhou X, Wang J (2016) Predicting malaria vector distribution under climate change scenarios in China: challenges for malaria elimination. Sci Rep. 6:20604.
14. O Alimi T, O Fuller D, A Qualls W, V Herrera S, Arevalo- Herrera M, L Quinones M, V G Lacerda M, C Beier J(2015) Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population. Parasit Vectors. 8:431.
15. Sofizadeh A, Rassi Y, Vatandoost H, Hanafi-Bojd AA, Mollalo A, Rafizadeh S, Akhavan AA(2017) Predicting the distribution of Phlebotomus papatasi (Diptera: Psychodidae), the primary vector of zoonotic cutaneous leishmaniasis, in Golestan Province of Iran using ecological niche modeling: comparison of MaxEnt and GARP models. J Med Entomol. 54(2):312-320.
16. M Samy A, B Annajar B, Ramadhan Dokhan M, Boussaa S, Peterson A T(2016) Coarse-resolution ecology of etiological agent, vector, and reservoirs of zoonotic cutaneous leishmaniasis in Libya. PLoS Negl Trop Dis. 10(2):e0004381.
17. Aghaei Afshar A, Hojjat F, Yaghoobi-Ershadi MR, Rassi Y, Akhavan AA, Gorouhi MA, Yousefi S, Hanafi-Bojd AA(2020) Modelling and evaluating the risk of zoonotic cutaneous leishmaniasis in selected areas of Kerman Province, south of Iran. Transbound Emerg Dis. 67(3):1271- 1283.
18. Valderrama L, Ayala S, Reyes C, González C R(2021) Modeling the potential distribution of the malaria vector Anopheles (Ano.) pseudopunctipennis Theobald (Diptera: Culicidae) in arid regions of Northern Chile. Front Public Health. 9:611152.
19. Ordoñez-Sierra R, Alberto Mastachi- Loza C, Díaz-Delgado C, P Cuervo- Robayo A, Roberto Fonseca Ortiz C, A Gómez-Albores M, Medina Torres I(2020) Spatial risk distribution of dengue based on the ecological niche model of Aedes aegypti (Diptera: Culicidae) in the Central Mexican highlands. J Med Entomol. 57(3):728-737.
20. Nejati , Bueno-Marí R, Collantes F, Hanafi-Bojd AA, Vatandoost H, Charrahy Z, Tabatabaei S M, Yaghoobi- Ershadi MR, Hasanzehi A, Shirzadi MR, Moosa-Kazemi S H, SedaghatMM (2017) Potential risk areas of Aedes albopictus in south-eastern Iran: a vector of dengue fever, zika, and chikungunya. Front Microbiol. 8:1660.
21. Hanafi-Bojd AA, Vatandoost H, Yaghoobi-Ershadi MR(2020) Climate change and the risk of malaria transmission in Iran. J Med Entomol. 57(1):50-64.
22. Van Vuuren DP, Stehfest E, den Elzen MG, Kram T, van Vliet J, Deetman S, Isaac M, Goldewijk KK, Hof A, Beltran AM (2011) RCP2. 6: exploring the possibility to keep global mean temperature increase below 2 C. Clim Change. 109(1–2): 95.
23. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE (2011) RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim Change. 109(1–2): 77.
24. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim Change. 109(1–2): 33.
25. Raiesi A, Nejati J, Ansari-moghaddam A, Sakeni M, Faraji L, Paktinat B, Nikpour F, Kamali F, Raiesi F (2012) Effects of foreign immigrants on malaria situation in cleared up and potential foci in one of the highest malaria burden district of southern Iran. Malar J. 11(1).
26. Ahmed S I Aly, Ashley M Vaughan, Stefan H I Kappe (2009) Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol. 63:195-221.
27. Reinert JF, Harbach RE, Kitching IJ (2004) Phylogeny and classification of Aedini (Diptera: Culicidae), based on morphological characters of all life stages. Zool J Linn Soc. 142(3): 289–368.
28. Reinert JF, Harbach RE, Kitching IJ (2008) Phylogeny and classification of Ochlerotatus and allied taxa (Diptera: Culicidae: Aedini) based on morphological data from all life stages. Zool J Linn Soc. 153(1): 29– 114.
29. Saghafipour A, Abai MR, Farzinnia B, Nafar R, Ladonni H, Azari-Hamidian S (2012) Mosquito (Diptera: culicidae) fauna of Qom Province, Iran. J Arthropod Borne Dis. 6 6(1):54-61.
30. Amerasinghe F P, Mukhtar M, Herrel N(2002) Keys to the Anopheline mosquitoes (Diptera: Culicidae) of Pakistan. J Med Entomol. 39(1):28- 35.
31. Qasim M, Naeem M, Bodlah I (2014) Mosquito (Diptera: Culicidae) of Murree Hills, Punjab,Pakistan. Pakistan J Zool. 46(2): 523–529.
32. Zahirnia A, Vatandoost H, Nateghpour M, Javadian E (2002) Insecticide resistance/susceptibility monitoring in Anopheles pulcherrimus (Diptera: Culicidae) in Ghasreghand district, Sistan and Baluchistan province, Iran. Iran J Publ Health. 31(1–2): 11–14.
33. Hoosh-Deghati H, Dinparast- Djadid N, Moin- Vaziri V, Atta H, Raz AA, Seyyed-Tabaei S J, Maleki-Ravasan N, Alipour H, Zakeri S, Azar- Gashb E(2017) Composition of Anopheles species collected from selected malarious areas of Afghanistan and Iran. J Arthropod Borne Dis. 11(3):354-362.
34. SNTikar, MJMendki, AKSharma, DSukumaran, Vijay Veer, Shri Prakash, B D Parashar (2011) Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci. 11: 85.
35. Faulde M K, Rueda L M, Khaireh B A(2014) First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 139:39-43.
36. Seyfarth M, Khaireh B A, Abdi A A, Bouh S M, Faulde M K(2019) Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established-malaria emerging. Parasitol Res. 118(3):725-732.
37. Dharmasiri A G G, Yashan Perera A, Harishchandra J, Herath H, Aravindan K, Jayasooriya H T R, Ranawaka G R, Hewavitharane M(2017) First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J. 16(1):326.
38. Zorello Laporta G, Garkauskas Ramos D, Cezar Ribeiro M, Anice Mureb Sallum M(2011) Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil. Mem Inst Oswaldo Cruz. 106 Suppl 1:239-45.
39. Al Ahmed AM, Naeem M, Kheir SM, Sallam MF (2015) Ecological distribution modeling of two malaria mosquito vectors using geographical information system in Al-Baha Province, Kingdom of Saudi Arabia. Pak J Zool. 47(6): 1797–1806.
40. Sedaghat MM, Harbach RE(2005) An annotated checklist of the Anopheles mosquitoes (Diptera: Culicidae) in Iran. J Vector Ecol. 30(2):272-6.
41. Hanafi-Bojd AA, Azari- Hamidian S, Vatandoost H, Charrahy Z(2011) Spatio-temporal distribution of malaria vectors (Diptera: Culicidae) across different climatic zones of Iran. Asian Pac J Trop Med. 4(6):498-504.
42. Salahimoghadam A, KHoshdel A, Barati M, Sedaghat MM (2014) An overview and mapping of Malaria and its vectors in Iran. Hormozgan Med J. 18(5): 428–440.
43. Abai MR, Vatandoost H, Dorzadeh H, Shayeghi M, Hanafi-Bojd AA, Raeisi A (2019) Evaluation of residual effects of lambdacyhalothrin WP10 in different surfaces against Anopheles stephensi, in a malarious area, southern Iran. J Entomol Nematol. 11(3): 36–43.
44. Moosa-Kazemi SH, Vatandoost H, Nikookar H, Fathian M (2009) Culicinae (Diptera: culicidae) mosquitoes in Chabahar county, Sistan and Baluchistan Province, southeastern Iran. Iran J Arthropod Borne Dis. 3(1):29-35.
45 Yaghoobi-Ershadi M R, Doosti S, Schaffner F, Moosa-Kazemi S H, Akbarzadeh K, Yaghoobi- Ershadi N (2017) Morphological studies on adult mosquitoes (Diptera: Culicidae) and first report of the potential Zika virus vector Aedes (Stegomyia) unilineatus (Theobald, 1906) in Iran. Bull Soc Pathol Exot. 110(2):116-121.
46. Doosti S, Yaghoobi- Ershadi MR, Schaffner F, Moosa- Kazemi S H, Akbarzadeh K, Gooya MM, Vatandoost H, Shirzadi M R, Mosta-Favi E(2016) Mosquito surveillance and the first record of the invasive mosquito species Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) in southern Iran. Iran J Public Health. 45(8):1064-1073.
47. Zaim M, Manouchehri A, Yaghoobi-Ershadi M (1986) Mosquito fauna of Iran (Diptera: Culicidae). Iran J Public Health. 15: 1–9.
48. Fathian M, Vatandoost H, Moosa-Kazemi S H, Raeisi A, Yaghoobi-Ershadi M R, Oshaghi MA, Sedaghat MM(2015) Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of southeastern Iran. J Arthropod Borne Dis. 9(1):22-34.
49. Lotfi M D (1973) Iranian species of genus Culex (Culicinae: Diptera) II. – Report of four species of larvae (including three new records) and 14 adult species. Bull Soc Pathol Exot Filiales. 66(1):204-7.
50. Azari-Hamidian S, Abai M R, Norouzi B(2020) Mansonia uniformis (Diptera: Culicidae), a genus and species new to Southwestern Asia, with a review of its medical and veterinary importance. Zootaxa. 4772(2):zootaxa.4772.2.10.
Files | ||
Issue | Vol 15 No 3 (2021) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/jad.v15i3.9817 | |
Keywords | ||
Malaria; Maximum entropy model; Anopheles; Iran |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |