Larvicidal Activity of Ethyl Acetate Extract of Derris elliptica Root against the Third-instar Larvae of Cypermethrin-Resistant Aedes aegypti Offspring
Abstract
Background: Derris elliptica extracts have a high larvicidal potential against the laboratory strain of Aedes aegypti larvae, but the effect on offspring larvae of pyrethroid-resistant strains of the species is lack understood. This study aimed to determine the larvicidal activity of the ethyl acetate extract of tuba root against the third-instar larvae of the Cypermethrin-resistant Ae. aegypti offspring.
Methods: The experimental study occupied four levels of ethyl acetate extract of D. elliptica namely 10, 25, 50, and 100 ppm, and each level was four times replicated. As many as twenty of healthy third-instar larvae, offspring of Cypermethrin-resistant Ae. aegypti were subjected to each experiment group. Larval mortality rate and lethal concentration 50% subject (LC50) were calculated after 24 and 48 hours of exposure time.
Results: Mortality of larvae increased directly proportional to the increase of extract concentration. Larval mortality rates after 24 and 48 hours of exposure were 40–67.5% and 62.5–97.5%, and LC50 were 34.945 and 6.461ppm, respectively.
Conclusion: The ethyl acetate extract of D. elliptica has the high effectiveness larvicidal potential against the third-instar larvae, offspring of the Cypermethrin-resistant Ae. aegypti. Isolation of the specific compound is necessarily done to obtain the active ingredient for larvicide formulation.
2. Araújo AP, Paiva MHS, Cabral AM, Cav-al¬canti AEHD, Pessoa LFF, Diniz DFA, Helvecio E, Silva EVG, Silva NM, Anastácio DB, Pontes C, Nunes V, Souza MFM, Magalhães FJR, Santos MAVM, Ayres CFJ (2019) Screening Aedes aegypti (Diptera: Culicidae) pop-ulations from Pernambuco, Brazil for re-sistance to Temephos, Diflubenzuron, and Cyper¬methrin and characterization of potential resistance mechanisms. J In-sec Sci. 19 (3): 1–15.
3. Dohutia C, Bhattacharyya DR, Sharma SK, Mohapatra PK, Bhattacharjee K, Gogoi K, Gogoi P, Mahanta J, Prakash A (2015) Larvicidal activity of few se-lect indigenous plants of North East In-dia against disease vector mosquitoes (Diptera: Cu¬licidae). Trop Biomed. 32(1): 17–23.
4. Komalamisra N, Trongtokit Y, Rongsri¬yam R, Apiwathnasorn C (2005) Screening for larvacidal activity in some Thai plants against four mosquito vector spe-cies. South¬east Asian J Trop Med Public Health. 36(6): 1412–1422.
5. Arnason JT, Sims SR, Scott IM (2012) Natural products from plants as insecti-cides. En¬cyclopedia of Life Support System (EoLSS). Phy¬tochemistry and pharmacognosy. Available at: http://www.eolss.net/sample-chapters/c06/e6-151-13.pdf
6. Zubairi SI, Sarmidi MR, Aziz RA (2015) A preliminary study on mosquito larvi¬cidal efficacy of rotenone extracted from Ma-laysia Derris sp. J Teknologi. 76(1): 275–279.
7. Komansilan A, Suriani NW, Lawalata H (2017) Test toxic tuba root extract as a natural insecticide on larvae of Aedes aegypti mosquito vector of dengue fe-ver. Int J Chemtech Res. 10(4): 522–528.
8. Sayono S, Nurullita U, Suryani M (2010) Pengaruh konsentrasi flavonoid dalam ekstrak akar tuba (Derris elliptica) ter-hadap kematian larva Aedes aegypti. [In Indonesian]. J Kesehat Masy Indones. 6 (1): 38–47.
9. Sayono S, Nurullita U (2016) Situasi terkini vektor dengue (Aedes aegypti) di Jawa Ten¬gah, Indonesian. Kemas. Jurnal Kesehatan Masyarakat. 11(2): 96–105.
10. Moyes C, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D (2017) Contemporary status of insec-ticides resistance in the major Aedes vec¬tors of arboviruses infecting humans.
PLoS Negl Trop Dis. 11(7): e0005625.
11. Singh AK, Tiwari MN, Prakash O, Sing MP (2012) A current review of Cyper-methrin-induced neurotoxicity and ni-gro¬striatal dopaminergic neurodegener-ation. Neuropharmacology 10: 64–71.
12. Kuswah RBS, Kaur T, Dykes CL, Kumar HR, Kapoor N, Sing OP (2020) A new knockdown resistance (kdr) mutation, F 1534L, in the Voltage-gated Sodium Chan¬ner of Aedes aegypti, co-occurring with F1534C, S989P, and V1016G. Par¬asit Vectors. 13: 327.
13. Insecticide Resistance Action Committee (IRAC) (2019) IRAC mode of action clas¬sification scheme. IRAC Interna-tion¬al Working Group. pp. 5–7.
14. Ge Y, Liu P, Yang R, Zhang L, Chen H, Camara I, Liu Y, Shi W (2015) Insecti-cidal constituents and activity of alka-loids from Cynanchum mongolicum. Molecules. 20: 17483–17492.
15. Khan MR, Omoloso AD, Barewai Y (2006) Antimicrobial activity of the Derris elliptica, Derris indica and Der¬ris trifoliata extractives. Fitoterapia. 77(4): 327–330.
16. Visetson S, Milne M (2001) Effect of root extract from Derris (Derris elliptica Benth) on mortality and detoxification enzyme levels in the Demondback Moth larvae (Plutella xylostella Linn.). Ka¬set-sart J (Nat. Sci.). 35: 157–163.
17. Sayono S, Anwar R, Sumanto D (2020) Evaluation of toxicity in four extract types of Tuba root against Dengue vec-tor, Aedes aegypti (Diptera: Cullicidae) larvae. Pak J Biol Sci. 23(12): 1530–1538.
18. Sayono S, Permatasari A, Sumanto D (2019) The effectiveness of Derris el-liptica (Wall.) Benth root extract against Temephos-resistant Aedes aegypti lar-vae. IOP Conference Series: Earth and Environmental Science. 292. The 1st In-ternational Conference on Food Sci¬ence and Technology 28–29 November 2018, Uni¬versitas Muhammadiyah Se¬marang, Semarang, Indonesia, p. 102052.
19. Liu Z (2008) Preparation of botanical sam¬ples for biomedical research. En¬docr Metab Immune Disord Drug Tar¬gets. 8 (2): 112–121.
20. Li XJ, Hareyama T, Tezuka Y, Zhang Y, Miyahara T, Kadota S (2005) Five new oleanolic acid glycosides from Achy-ranthes bidentata with inhibitory activ-ity on osteoclast formation. Planta Med. 71(7): 673–679.
21. World Health Organization (2016) Moni¬toring and managing insecticide re¬sistance in Aedes mosquito popula-tions. Interim guidance for entomolo-gists. The WHO Department of Con-trol of Ne¬glected Tropical Diseases and Global Malaria Programme, Ge-neva. Available at: https://apps.who.int/iris/bitstream/handle/10665/204588/WHO_ZIKV_VC_16.1_eng.pdf;jsessionid=A18C3776D514404CE7F5CC90F1981029?sequence=2
22. Sayono S, Safira FA, Anwar R (2019) In-vitro study on the larvicidal activity of Manihot glaziovii peel extract against Aedes aegypti larvae. Ann Parasitol. 65 (4): 403–410.
23. Ravi R, Zulkrnin NSH, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, Ishak IH, Mohd Amin MF (2018) Chem¬ical composition and larvicidal ac-tivities of Azolla pinnata extracts against Aedes (Diptera: Cu¬licidae). PLoS One. 13(11): e0206982.
24. Krzyzaniak LM, Antonelli-Ushirobira TM, Panizzon G, Luiza Sereia AL, Sou-za JRP, Zequi JAC, Novello CR, Lopes GC, Medei¬ros DC, Silva DB, Leite-Mello EVS, Mello JCP (2017) Larvicid-al activity against Aedes ae¬gypti and chemical characterization of the inflo-rescences of Tagetes patula. Evid Based Comple¬
ment Alternat Med. 2017: 9602368.
25. Sillo AJ, Makirita WE, Swai H, Chacha M (2019) Larvicidal activity of Hypo-estes forskaolii (Vahl) R.Br root ex¬tracts against Anopheles gambiae Gi¬less.s, Ae-des aegypti L, and Culex quin-quefasciatus Say. J Exp Pharmacol. 11: 23–27.
26. Scalvenzi L, Radice M, Toma L, Severini F, Boccolini D, Bella A, Guerrini A, Tac¬chini M, Sacchetti G, Chiurato M, Romi R, Luca MD (2019) Larvicidal ac-tivity of Ocimum campechianum, Ocotea quixos and Piper aduncum es-sential oils against Aedes aegypti. Para-sit. 26(23): 1–8.
27. Amado CJRR, Souto CRNP, Magalhães MS, Arranz CJCE, Carvalho CJCT (2017) Chemical composition and larvi-cidal activity of cashew nutshell etha-nolic extract against mosquito larvae. Rev Cub Quim. 29(3): 330–340.
28. Rocha DK, Matos O, Novo MT, Figueire-do AC, Delgado M, Moiteiro C (2015) Larvicidal activity against Aedes ae¬gypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat Prod Com¬mun. 10 (4): 677–682.
29. Maywan H (2016) Aktivi¬tas larvasida ekstrak etanol, fraksi n-heksan, etil asetat, dan metanol daun sembukan ter-hadap lar¬va nyamuk Aedes aegypti dan Anopheles instar III. Trad Med J. 21(3): 137–142.
30. Das SK (2013) Mode of action of pesti-cides and the novel trends-A critical re-view. Int Res J Agric Sci Soil. 3(11): 393–401.
31. Spark TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol. 121: 122–128.
32. Soderlund DM (2012) Molecular mecha-nisms of pyrethroid insecticide neuro-toxicity: recent advances. Arch Toxicol. 86(2): 165–181.
33. Silver KS, Du Y, Nomura Y, Olivera EE,
Salgado VL, Zhoro BS, Dong K (2014)
Voltage-Gated Sodium Channels as in-secticide targets. Adv In Insect Phys. 46: 389–433.
34. Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS (2014) Molecular biology of insect so-dium channels and pyrethroid re-sistance. Insect Biochem Mol Biol. 50: 1–17.
35. Lagunay RAE, Uy MM (2015) Evalua-tion of the phytochemical constituents of the leaves of Ficus minahassae Tesym and De Vr., Casuarina equiseti-folia Linn., Leucosyke capitellata (Pior) Wedd., Cas¬sia sophera Linn., Derris el-liptica Benth., Cyperus brevifolius (Rottb.) Hassk., Pip¬er abbreviatum Opiz., Ixora chinensis Lam., Leea acu-leata Blume, and Drymoglossum pilo-selloides Linn. AAB Bioflux. 7 (1): 51–58.
36. Zubairi SI, Ramli KA, Majid FAA, Sar-midi MR, Aziz RA (2005) Biological screening on the extract of Derris ellip-tica. Pro¬ceeding of Kustem 4th Annual Seminar on Sustainability Science and Management, 2005 May 2–3, Primula Beach Resort, Kuala Terengganu. Available at: http://eprints.utm.my/id/eprint/5263/
37. Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mos-quito larvicides. Indian J Med Res. 135: 581–598.
38. Rodríguez-Cavallo E, Guarnizo-Méndez J, Yépez-Terrill A, Cárdenas-Rivero A, Díaz-Castillo F, Méndez-Cuadro D (2018) Protein carbonylation is a medi-ator in larvicidal mechanisms of Taber-naemon¬tana cymosa ethanolic extract. J King Saud Univ Sci. 31(4): 464–471.
39. Millugo TK, Osoma LK, Ochanda JO, Owuor BO, Wamunyokoli FA, Oyugi JO, Ochieng JW (2013) Antagonistic ef-fect of alkaloids and saponins on bioac-tivity in the quinine tree (Rauvolfia caffra¬sond.): further evidence to support biotechnology in traditional medicinal plants. BMC Compl Alternative Med. 13: 285.
40. Thavamoney N, Sivanadian L, Tee LH, Khoo HE, Prasad KN, Kong KW (2018) Extraction and recovery of phy-tochemi¬cal components and antioxida-tive prop¬erties in fruit parts of Dacryo-des ros¬trata influenced by different sol-vents. J Food Sci Technol. 55(7): 2523–2532.
Files | ||
Issue | Vol 14 No 4 (2020) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/jad.v14i4.5276 | |
Keywords | ||
Larvicidal activity; Ethyl acetate extract; Derris elliptica root; Cypermethrin resistant; Aedes aegypti |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |