Original Article

The Evaluation of Androctonus crassicauda Antivenom against the Effects of Aegaeobuthus nigrocinctus Scorpion Venom on Autophagy, Apoptosis and Necroptosis

Abstract

Background: In this study aimed to show the role of autophagy acting as a seesaw between apoptosis and necroptosis in certain vital organs under the effects of the Aegaeobuthus nigricinctus venom and different dosages of the Androcto­nus crassicauda antivenom administration in mice.

Methods: In the venom group (VG), mice (n= 6) were inoculated with 2LD50 A. nigrocinctus venom. In the antivenom administered groups (AVG), the effects of the potency of the A. crassicauda antivenom were evaluated to have a neu­tralization effect against 20LD50 of the A. nigrocinctus venom. After histopathological examination, expressions of mammalian target of rapamycin (mTOR) as an autophagy activator, receptor-interacting serine/threonine-protein kinase 3 (RIPK3) as a necroptosis activator, and caspase-3, caspase-9 as the markers of apoptotic cell death signals were eval­uated by the immunoperoxidase method in addition to DNA in-situ fragmentations by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method.

Results: Only in VG, caspases and TUNEL expressions were found to be higher after the envenomation process in contrast to the elevated RIPK3 expressions. mTOR expressions remained almost stable in the organs. In AG, mTOR expressions were further increased in the 30LD50 and 40LD50 groups.

Conclusion: There were an increased mTOR expression and stabilized caspases and TUNEL expression in these sub­groups, the RIPK3 expressions were found to be low when compared with all of the antivenom administration groups. Increasing doses of the antivenom drifts more the cells to autophagy while cell fate in organs under envenomation get­ting rid of apoptosis and necroptosis pathways.

1. Zhang X, Zhang X (2016) Scorpion venoms
in gastric cancer. Oncol Lett. 12: 3683–
3686.
2. Komatsu M, Waguri S, Koike M, Sou Y,
Ueno T, Hara T, Mizushima N, Iwata J,
Ezaki J, Murata S, Hamazaki J, Nishito
Y, Iemura S, Natsume T, Yanagawa T,
Uwayama J, Warabi E, Yoshida H, Ishii
T, Kobayashi A, Yamamoto M, Yue Z,
Uchiyama Y, Kominami E, Tanaka K
(2007) Homeostatic levels of p62 cont-
rol cytoplasmic inclusion body forma-
tion in autophagy deficient mice. Cell.
131: 1149–1163.
3. Mathew R, Karp CM, Beaudoin B, Vuong
N, Chen G, Bray K, Reddy A, Bhanot
G, Gelinas C, Dipaola RS, Karantza-
Wadsworth V, White E (2009) Auto-
phagy suppresses tumorigenesis through
elimination of p62. Cell. 137(6): 1062–
1075.
4. Béchohra L, Laraba-Djebari F, Hammoudi-
Triki D (2016) Cytotoxic activities of
Androctonus australis hector venom and
its toxic fractions on human lung cancer
cell line. J Venom Anim Toxins Incl
Trop Dis. 22: 29.
5. Naserzadeh P, Mehr SN, Sadabadi Z, Seydi
E, Salimi A, Pourahmad J (2018) Cur-
cumin protects mitochondria and cardio-
myocytes from oxidative damage and
apoptosis induced by Hemiscorpius lep-
turus venom. Drug Res. 68: 113–120.
6. Laplante M, Sabatini DM (2012) mTOR
signaling in growth control and disease.
Cell. 149: 274–293.
7. Benjamin D, Colombi M, Moroni C, Hall
MN (2011) Rapamycin passes the torch:
A new generation of mTOR inhibitors.
Nat Rev Drug Discov. 10: 868–880.
8. Hu X, Han W, Li L (2007) Targeting the
weak point of cancer by induction of
necroptosis. Autophagy 3: 490–492.
9. Horita H, Frankel AE, Thorburn A (2008)
Acute myeloid leukemia-targeted toxin
activates both apoptotic and necroptotic
death mechanisms. PLoS One. 3: e3909.
10. Vandenabeele P, Galluzzi L, Vanden BT,
Kroemer G (2010) Molecular mecha-
nisms of necroptosis: an ordered cellular
explosion. Nat Rev Mol Cell Biol. 11:
700–714.
11. Sun L, Wang H, Wang Z, He S, Chen S,
Liao D, Wang L, Yan J, Liu W, Lei X,
Wang X (2012) Mixed lineage kinase
domain-like protein mediates necrosis
signaling downstream of RIP3 kinase.
Cell. 148: 213–227.
12. Cullen SP, Henry CM, Kearney CJ, Logue
SE, Feoktistova M, Tynan GA, Lavelle
EC, Leverkus M, Martin SJ (2013) Fas/
CD95-induced chemokines can serve as
“Find-Me” signals for apoptotic cells.
Mol Cell. 49: 1034–1038.
13. Meier P, Vousden KH (2007) Lucifer’s
labyrinth–Ten years of path finding in
cell death. Mol Cell. 28: 746–754.
14. Allan LA, Clarke PR (2009) Apoptosis
and autophagy: Regulation of caspase-9
by phosphorylation. FEBS Journal. 276:
6063–6073.
15. Vanden BT, Linkermann A, Jouan-Lanhouet
S, Walczak H, Vandenabeele P (2014) Re-
gulated necrosis: the expanding net-work
of non-apoptotic cell death path-ways.
Nat Rev Mol Cell Biol. 15: 135–116. Parrish B, Free D, Kornbluth S (2013)
Cellular mechanism controlling caspase
activation and function. Cold Spring
Harb Perspect Biol. 5: a008672.
17. Vazirianzadeh B, Hajihosseini R, Amiri B,
Bagheri S (2008) Epidemiological study
of scorpionism in the hospitals of Ah-
vaz, SW Iran. Journal of Health Scien-
ces, Ahvaz Joundy Shapour University
of Medical Sciences 2(1): 17–25.
18. Vazirianzadeh B, Alizadeh I, Taghavi Mo-
ghadam A, Rahdar M (2019) Determi-
nation of Scorpion Venom LD50 of Four
Species in Khuzestan Province (South-
west of Iran). Biochem Cell Arch. 19(1):
2351–2354.
19. Karataş A (2007) Mesobuthus nigrocinctus
(Ehrenberg, 1828) (Scorpiones: Buthi-
dae) in Turkey: Distribution and Mor-
phological Variation. Euscorpius. 56: 1–
10.
20. Bakır F, Ozkan O, Alcigir ME, Yagmur
EA (2021) The lethality, histological,
haematological and biochemical altera-
tions in mice envenomated with Ae-
gaeobuthus nigrocinctus venom. Toxi-
con. 200: 118–126.
21. Dehesa-Dávila M, Possani LD (1994)
Scorpionism and serotherapy in Mexi-
co. Toxicon. 32(9): 1015–1018.
22. Ozkan O, Yağmur EA (2017) Neutralization
Capacity of Monovalant Antivenom
Against Existing Lethal Scorpions in the
Turkish Scorpiofauna. Iran J Pharm Res.
16(2): 653–660.
23. Lalaoui N, Lindqvist LM, Sandow JJ,
Ekert PG (2015) The molecular relation-
ships between apoptosis, autophagy and
necroptosis. Semin Cell Dev Biol. 39:
63–69.
24. Walsh CM (2014) Grand challenge since
death and survival: Apoptosis vs. nec-
roptosis. Fron Cell Dev Biol. 2: 1–4.
25. Goodall MG, Filtwalter B, Zahedi S, Wu
M, Rodriguez D, Mulcahy-Levy JM, Green
DR, Morgan M, Cramer SD, Thorburn
A (2016) The Autophagy machinery
controls cell death switching between
apoptosis and necroptosis. Dev Cell. 37:
337–349.
26. Li Y, Li S, Qin X, Hou W, Dong H, Yao
L, Xiong L (2014) The pleiotropic roles
of sphingolipid signaling in autophagy.
Cell Death Dis. 5: e1245.
27. Veiga A, Berger M, Guimaraes J (2009)
Lonomia obliqua venom: pharmaco-toxi-
cological effects and biotechnological
perspectives. In: De Lima ME (Ed) Ani-
mal Toxins: The State of the Art Pers-
pectives on Health and Biotechnology.
1st ed. Belo Horizonte Editora UFMG;
Brazil, pp. 371–390.
28. Mohseni A, Vazirianzadeh B, Hossienzadeh
M, Salehcheh M, Moradi A, Moravvej
SA (2013) The roles of some scorpions,
Hemiscorpius lepturus and Androctonus
crassicauda, in a scorpionism focus in
Ramhormorz, southwestern Iran. J In-
sect Sci. 13: 89.
29. Arjmand M, Akbari Z, Taghizadeh N,
Shahbazzadeh D, Zamani Z (2015)
NMR-based metabonomics survey in
rats envenomed by Hemiscorpius lep-
turus venom. Toxicon. 94: 16–22.
30. Al-Asmari AK, Riyasdeen A, Islam M
(2018) Scorpion venom causes apop-tosis
by increasing reactive oxygen spe-cies
and cell cycle arrest in MDA-MB-231 and
HCT-8 cancer cell lines. J Evid Based
Integr Med. 23: 2156587217751796.
31. Rashedi I, Panigrahi S, Ezzati P, Ghavami
S, Losi M (2007) Autoimmunity and
apoptosis – therapeutic implications.
Curr Med Chem. 14: 3139–3159.
32. Ghavami S, Hashemi M, Ande SR, Ye-
ganeh B, Xiao W, Eshraghi M, Bus J,
Kadkhoda K, Wiechec E, Halayko AJ,
Los M (2009) Apoptosis and cancer:
mutations within caspase genes. J Med
Genet. 46: 497–510.
33. Slee EA, Harte MT, Kluck RMi Eolf BB,
Casiano CA, Newmeyer DD, Wang HReed JC, Nicholson DW, Alnemi ES,
Green DR, Martin SJ (1999) Ordering
the cytochrome c-initiated caspase cascade:
Hierarchical activation of caspases-2, -3,
-6, -7, -8, and -10 in a caspase-9-depen-
dent manner. J Cell Biol. 144: 281–292.
34. Levine B, Kroemer G (2008) Autophagy
in the pathogenesis of disease. Cell. 132:
27–42.
35. Codogno P, Mehrpour M, Proikas-Cezanne
T (2011) Canonical and non-canonical
autophagy: variations on a common theme
of self-eating? Nat Rev Mol Cell Biol.
13: 7–12.
36. Yang YP, Liang ZQ, Gu ZL, Qin, ZH
(2005) Molecular mechanism and regu-
lation of autophagy. Acta Pharmacol
Sinica. 26: 1421–1434.
37. Moretti L, Attia A, Kim KW, Lu B (2007)
Crosstalk between Bak/Bax and mTOR
signaling regulates radiation-induced
autophagy. Autophagy. 3: 142–144.
38. Boya P, Gonzalez-Polo RA, Casares N,
Perfettini JL, Dessen P, Larochette N,
Métivier D, Meley D, Souquere S.
Yoshimori T, Pierron G, Codogno P,
Kroemer G (2005) Inhibition of mac-
roautophagy triggers apoptosis. Mol
Cell Biol. 25: 1025–1040.
39. Holler N, Zaru R, Micheau O, Thome M,
Attinger A, Valitutti S, Bodmer JL,
Schneider P, Seed B, Tschopp J (2000).
Fas triggers an alternative, caspase-8-
independent cell death pathway using
the kinase RIP as effector molecule. Nat
Immunol. 1(6): 489–495.
40. Krifi MN, Savin S, Debray M, Bon C, El
Ayeb M, Choumet V (2005) Pharma-
cokinetic studies of scorpion venom be-
fore and after antivenom immunotherapy.
Toxicon. 45: 187–198.
Files
IssueVol 16 No 4 (2022) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v16i4.12084
Keywords
Scorpion; Aegaeobuthus nigrocinctus venom; Androctonus crassicauda antivenom; Cell death mechanisms

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Alcıgır M, Ozkan O. The Evaluation of Androctonus crassicauda Antivenom against the Effects of Aegaeobuthus nigrocinctus Scorpion Venom on Autophagy, Apoptosis and Necroptosis. J Arthropod Borne Dis. 2023;16(4):288–300.