Original Article

Modeling the Distribution of Dominant Hard Ticks in Southeastern Coastal Areas of the Caspian Sea

Abstract

Background: Ticks are hematophagous arthropods that have direct and indirect effects on hosts, including the trans­mission of pathogens. An environmental suitability study of some vector species of hard ticks was conducted using the MaxEnt model in the south-eastern region of the Caspian Sea in Iran.

Methods: The ticks were collected monthly (2014−2015) at 45 study sites covering different areas in terms of topogra­phy. Because most farms in the study area are traditionally engaged in sheep production and they are taken to pastures in the warm season, the ticks were sampled from herds of sheep.

Results: In total, 2410 hard ticks were collected and the vector species with wider distributions were considered for modelling. The areas under the curve for Hyalomma anatulicum, Hy. asiaticum, Hy. marginatum, Rhipicephalus bursa, Rh. sanguineus, and Rh. turanicus were 0.848, 0.762, 0.812, 0.772, 0.770 and 0.803, respectively. This means that tem­perature and precipitation were effective environmental variables for the prediction of appropriate regions for these tick species. The outputs of the models indicated that the western and south- western regions of Golestan Province provided the best niches for the presence of ticks.

Conclusion: The western regions of Golestan Province are potential habitats for tick-borne diseases in both livestock and humans and special attention should be focused on preventing the spread of such diseases in this region.

1. Jaenson TGT, Eisen L, Comsted P, Mejlon HA, Lindgren E, Bergström S, Olsen B (2009) Risk indicators for the tick Ix¬odes ricinus and Borrelia burgdorferi sen¬su lato in Sweden. Med Vet Entomol. 23(3): 226–237.
2. Rajput Z, Hu S-h, Arijo A, Habib M, Kha-lid M (2005) Comparative study of An-aplasma parasites in tick carrying buf-faloes and cattle. J Zhejiang Univ Sci B. 6(11): 1057−1062.
3. Randolph SE (2009) Epidemiological con-sequences of the ecological physiology of ticks. Adv Insect Phys. 37: 297−339.
4. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George JC, Golovljova I, Jaenson TG, Jensen JK, Jensen PM (2013) Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit vectors. 6(1): 1.
5. Wall R and Shearer D (2001) Veterinary Ectoparasites Biology, Pathology and Con¬trol. Blackwell Science, Paris.
6. de la Fuente J, Kocan KM (2003) Advanc-es in the identification and characteriza-tion of protective antigens for recombi-nant vaccines against tick infestations. Expert Rev Vaccines. 2(4): 583−594.
7. Hoogstraal H, Kaiser MN (1959) Observa-tions on Egyptian Hyalomma ticks (Ix-odoidea, Ixodidae). 5. Biological notes and differences in identity of H. anatolicum and its subspecies anatolicum Koch and excavatum Koch among Russian and oth¬er workers. Identity of H. lusitanicum Koch. Ann Entomol Soc Am. 52(3): 243−261.
8. Walker AR (2003) Ticks of domestic animals
in Africa: a guide to identifica¬tion of spe¬cies: Bioscience Reports Ed¬inburgh.
9. Choubdar N, Karimian F, Koosha M, Nejati J, Oshaghi MA (2021) Hyalomma spp. ticks and associated Anaplasma spp. and Ehrlichia spp. on the Iran-Pakistan bor¬der. Parasit Vectors. 14(1): 469.
10. Mohammed RR, Enferadi A, Sidiq KR, Sarani S, Khademi P, Jaydari A, Ahmed AK (2023) Molecular Detection of Fran¬cisella tularensis Isolated from Ticks of Livestock in Kurdistan Region, Iraq. Vec¬tor Borne Zoonotic Dis. 23(10): 514−519.
11. Choubdar N, Karimian F, Koosha M, Oshaghi MA (2021) An integrated over-view of the bacterial flora composition of Hyalomma anatolicum, the main vec-tor of CCHF. PLoS Negl Trop Dis. 15 (6): e0009480.
12. Hanafi-Bojd AA, Jafari S, Telmadarraiy Z, Abbasi-Ghahramanloo A, Moradi-Asl E (2021) Spatial distribution of ticks (Arach¬niada: Argasidae and Ixodidae) and their infection rate to Crimean-Congo hem¬orrhagic fever Virus in Iran. J Ar¬thropod-Borne Dis. 15(1): 41−59.
13. Hosseini-Vasoukolaei N, Chinikar S, Tel-madarraiy Z, Faghihi F, Hosseini-Vasouko¬laei M (2016) Serological and molecular epidemiology of Crimean-Con¬go hemorrhagic fever in Ghaemshahr coun¬ty in Mazandaran Province, Iran. Trop Bimed. 33(4): 807−813.
14. Hosseini-Vasoukolaei N, Oshaghi MA, Sha¬yan P, Vatandoost H, Babamahmoudi F, Yaghoobi-Ershadi MR, Telmadarraiy Z, Mohtarami F (2014) Anaplasma infec¬tion in ticks, livestock and human in Ghaemshahr, Mazandaran Province, Iran. J Arthropod-Borne Dis. 8(2): 204−211.
15. Bekloo AJ, Bakhshi H, Soufizadeh A, Sed¬aghat MM, Bekloo RJ, Ramzgouyan MR, Chegeni AH, Faghihi F, Telmadarraiy Z (2017) Ticks circulate Anaplasma, Ehr¬lichia, Babesia and Theileria parasites in North of Iran. Vet Parasitol. 248: 21−24.
16. Fathi A, Nabavi R, Noaman V, Sarani A, Saadati D, Ben Said M, Ghafar A, Jab-bar A, Sazmand A (2024) Molecular iden¬tification, risk factor assessment, and phy¬logenetic analysis of tick-borne patho¬gens in symptomatic and asymptomatic cattle from South-Eastern Iran. Exp Appl Acarol. 92(3): 479−506.
17. Izadi S, Naieni KH, Madjdzadeh SR, Nadim A (2004) Crimean-Congo hemorrhagic fever in Sistan and Baluchestan Prov¬ince of Iran, a case-control study on ep¬idemiological characteristics. Int J Infect Dis. 8(5): 299−306.
18. Jabbari A, Besharat S, Abbasi A, Moradi A, Kalavi K (2006) Crimean-Congo Hem¬orrhagic Fever: Case series from a medi¬cal center in Golestan Province, North¬east of Iran (2004−2006). Indian J Med Sci. 60(8): 327−329.
19. Mazlum Z (1968) Hyalomma asiaticum asiaticum Schülze and Schlottke, 1929. Its distribution, hosts, seasonal activity, life cycle, and role in transmission of bovine theileriosis in Iran. Acarologia. 10(3): 437−442.
20. Nabian S, Rahbari S, Changizi A, Shayan P (2009) The distribution of Hyalomma spp. ticks from domestic ruminants in Iran. Med Vet Entomol. 23(3): 281−283.
21. Fathi A, Nabavi R, Noaman V, Sarani A, Saadati D, Ben Said M, Ghafar A, Jab-bar A, Sazmand A (2024) Molecular iden¬tification, risk factor assessment, and phylogenetic analysis of tick-borne path¬ogens in symptomatic and asymptomatic cattle from South-Eastern Iran. Exp Appl Acarol. 92(3): 479−506.
22. Gern L, Cadenas FM, Burri C (2008) In-fluence of some climatic factors on Ix-odes ricinus ticks studied along altitudi-nal gradients in two geographic regions in Switzerland. Int J Med Microbiol. 298: 55−59.
23. Randolph S (2008) The impact of tick ecol¬ogy on pathogen transmission dynamics. Ticks: biology, disease and control. 40: 72.
24. Gray J, Dautel H, Estrada-Peña A, Kahl O, Lindgren E (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis. 2009: 593232.
25. Estrada-Peña A, Ayllón N, De La Fuente J (2012) Impact of climate trends on tick-borne pathogen transmission. Front Phys¬iol. 3: 64.
26. Kiewra D, Kryza M, Szymanowski M (2014) Influence of selected meteoro¬log-ical variables on the questing activity of Ixodes ricinus ticks in Lower Silesia, SW Poland. J Vector Ecol. 39(1): 138−145.
27. Schulz M, Mahling M, Pfister K (2014) Abun¬dance and seasonal activity of quest¬ing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. J Vector Ecol. 39(1): 56−65.
28. Choubdar N, Oshaghi MA, Rafinejad J, Pourmand MR, Maleki-Ravasan N, Salehi-Vaziri M, Telmadarraiy Z, Karimian F, Koosha M, Rahimi-Foroushani A (2019) Effect of meteorological factors on Hy¬alomma species composition and their host preference, seasonal prevalence and infection status to Crimean-Congo haem¬orrhagic fever in Iran. J Arthropod-Borne Dis. 13(3): 268−283.
29. Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhoff AM (2013) Research on the ecology of ticks and tick-borne patho-gens-methodological principles and ca-ve¬ats. Front Cell Infect Microbiol. 3: 29.
30. Pindyck RS (2013) Climate change pol¬icy: what do the models tell us? J Econ Lit. 51(3): 860−872.
31. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive eval¬u-ation. Ecography. 31(2): 161−175.
32. Merow C, Smith MJ, Silander JAJr (2013) A practical guide to MaxEnt for mod-eling species' distributions: what it does, and why inputs and settings matter. Ecog¬raphy, 36: 1058−1069.
33. Shayeghi M, Piazak N, Yazdi F, Abolhasani M (2005) Geographical distributation of soft and hard ticks in Mazandaran Provic¬ne. J Public Health Res. 3(3): 49−56.
34. Razmi GR, Najarnejad V, Rashtibaf M (2011) Determination the frequency of Ix¬odid ticks on the sheep in Khorasan Ra¬zavi Province, Iran. Arch Razi Inst. 66 (2): 129−132.
35. Vahedi-Noori N, Rahbari S, Bokaei S (2012) The seasonal activity of ixodes ricinus tick in Amol, Mazandaran Province, North¬ern Iran. J Arthropod Borne Dis. 6 (2): 129−135.
36. Rahbari S (1995) Studies on Some Eco-log¬ical Aspects of Tick West Azarbidjan, Iran. J Appl Anim Res. 7(2): 189−194.
37. Hosseini-Chegeni A, Tavakoli M, Telma-darraiy Z (2019) The updated list of ticks (Acari: Ixodidae and Argasidae) occur¬ring in Iran with a key to the identifi¬cation of species. Syst Appl Acarol. 24 (11): 2133−2166.
38. Van Wyk CL, Mtshali S, Ramatla T, Lekota KE, Xuan X, Thekisoe O (2023) Dis¬tri¬bution of Rhipicephalus sanguineus and Heamaphysalis elliptica dog ticks and pathogens they are carrying: A system¬atic review. Vet Parasitol: Reg Stud Re¬ports. 100969.
39. Chegeni AH, Tavakoli M (2020) Argas hermanni Audouin (Acari: Argasidae), a new member of Iranian tick fauna. Per-sian J Acarol. 9(2): 173–180.
40. Nabian S, Rahbari S, Shayan P, Had-dadza¬deh H (2007) Current status of tick fau¬na in north of Iran. Iran J Parasitol. 2(1): 12−17.
41. Sarani M, Telmadarraiy Z, Moghaddam AS, Azam K, Sedaghat MM (2014) Distri¬bu¬tion of ticks (Acari: Ixodidae) infesting domestic ruminants in mountainous areas of Golestan Province, Iran. Asian Pac J Trop Biomed. 4: S246−S51.
42. Ebrahimzade E, Pazhoom F, Shayan P, Bakhshani A (2015) Ticks fauna of sheep and goats in some suburbs of Ma-zanda¬ran Province, Iran. Iran J Vet Med. 8(4): 275−279.
43. Sofizadeh A, Telmadarraiy Z, Rahnama A, Gorganli-Davaji A, Hosseini-Chegeni A (2014) Hard tick species of livestock and their bioecology in Golestan Prov-ince, north of Iran. J Arthropod Borne Dis. 8(1): 108−116.
44. Naddaf SR, Mahmoudi A, Ghasemi A, Ro¬hani M, Mohammadi A, Ziapour SP, Ne¬mati AH, Mostafavi E (2020) Infection of hard ticks in the Caspian Sea littoral of Iran with Lyme borreliosis and re¬laps¬ing fever borreliae. Ticks Tick-borne Dis. 11(6): 101500.
45. Sharifdini M, Norouzi B, Azari-Hamidian S, Karamzadeh N (2021) The first rec-ord of ectoparasites of raccoons (Pro¬cy-on lotor) (Carnivora, Procyonidae) in Iran. Persian J Acarol. 10(1): 41–54.
46. Estrada-Pena A, Bouattour A, Camicas J, Walker A (2004) Ticks of domestic an-imals in the Mediterranean region. Uni-versity of Zaragoza, Spain. 131.
47. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int J Cli-matol. 37(12): 4302−4315.
48. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Mod¬el. 190(3−4): 231−259.
49. Donaldson TG, de Leon AAP, Li AI, Cas-tro-Arellano I, Wozniak E, Boyle WK, Hargrove R, Wilder HK, Kim HJ, Teel PD (2016) Assessment of the geo¬graph¬ic distribution of Ornithodoros turicata (Argasidae): climate variation and host diversity. PLoS Negl Trop Dis. 10(2): e0004383.
50. Domșa C, Sándor AD, Mihalca AD (2016) Climate change and species distribution: possible scenarios for thermophilic ticks in Romania. Geospat Health. 11(2): 151−156.
51. Alcala-Canto Y, Figueroa-Castillo JA, Ib-arra-Velarde F, Vera-Montenegro Y, Cer¬vantes-Valencia ME, Salem AZ, Cuél¬lar-Ordaz JA (2018) Development of the first georeferenced map of Rhip-iceph¬a¬lus (Boophilus) spp. in Mexico from 1970 to date and prediction of its spatial dis¬tribution. Geospat Health. 13(1): 110−117.
52. Farahi A, Ebrahimzade E, Nabian S, Hanafi-Bojd AA, Akbarzadeh K, Bahonar A (2016) Temporal and spatial distribution and species diversity of hard ticks (Ac¬ari: Ixodidae) in the eastern region of Cas¬pian Sea. Acta Trop. 164: 1−9.
53. Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J (2015) Climate change and vector-borne diseases: what are the implications for public health research and policy? Philos Trans R Soc Biol Sci. 370(1665): 20130552.
54. Mazlum Z (1971) Ticks of domestic ani-mals in Iran: geographical distribution, host relation and seasonal activity. J Vet Fac Univ Tehran Iran. 27: 1−32.
55. Sureau P, Klein J (1980) Arboviruses in Iran (author's transl). Revue du Corps de Sante Colonial. 40(5): 549−554.
56. Nabian S, Rahbari S (2008) Occurrence of soft and hard ticks on ruminants in Zag-ros mountainous areas of Iran. J Ar¬thro-pod Borne Dis. 2(1): 16−20.
57. Hosseini Vasoukolaei N, Telmadarraiy Z, Vatandoost H, Reza YEM, Morteza HV, Ali OM (2010) Survey of tick species parasiting domestic ruminants in Ghaemshahr County, Mazandaran Prov-ince, Iran. Asian Pac J Trop Med. 3(10): 804−806.
58. Ebrahimzadeh Abkooh E, Pazhoom F, Na-bian S, Shayan P, Bakhshani A (2015) Ticks fauna of sheep and goats in some suburbs of Mazandaran Province, Iran. Iranian J Vet Med. 8(4): 275−279.
59. Rahbari S, Nabian S, Shayan P (2007) Pri-mary report on distribution of tick fauna in Iran. Parasitol Res. 101(2): 175−177.
60. Peterson AT (2006) Uses and require-ments of ecological niche models and related distributional models. Biodivers Inform. 3: 59−72.
61. Leta S, De Clercq EM, Madder M (2013) High-resolution predictive mapping for Rhipicephalus appendiculatus (Acari: Ix-odidae) in the Horn of Africa. Exp Appl Acarol. 60(4): 531−542.
Files
IssueVol 18 No 2 (2024) QRcode
SectionOriginal Article
Keywords
Ticks; Ixodidae; Ecological niche modeling; MaxEnt; Iran

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Nabian S, Ebrahimzadeh E, Farahi A, Hanafi-Bojd AA. Modeling the Distribution of Dominant Hard Ticks in Southeastern Coastal Areas of the Caspian Sea. J Arthropod Borne Dis. 2024;18(2):122-136.