Original Article

Drosophila melanogaster Laboratory Rearing for Wolbachia-Based Control Programs, a Component of Dengue Control

Abstract

Background: Drosophila melanogaster flies are smooth, low upkeep and safe model organisms, they can be effortless­ly used in different fields of life sciences like genomics, biotechnology, genetics, disease model, and Wolbachia-based approaches to fight vectors and the pathogens they transmit.
Methods: Fruit fly specimens were collected in 25 districts (14 provinces) of Iran and their morphological recognition was proven by molecular analysis based on sequence homology of mitochondrial COI barcode region. Essential in­formation and specific requirements were provided for laboratory rearing of D. melanogaster.
Results: Drosophila melanogaster colonies were found in 23 out of 25 districts. Also, five related species coincident with D. melanogaster were reported in this study including D. ananassae/D. parapallidosa, D. hydei, D. repleta, Zapri­onus indianus (Diptera: Drosophilidae), and Megaselia scalaris (Diptera: Phoridae). The Iranian D. melanogaster mo­lecular signature and their rearing techniques have been described here. The complete life cycle, from (egg to adult), takes approximately 8 days at 25 °C. Some biological points have been presented with highlighting capturing, rearing, culturing, and embryo collection along with primitive recognition and segregation between females and males have been presented. A recipe for culture media and the quantity of various ingredients have been provided.
Conclusion: This is the first report on the D. repleta and D. ananassae/D. parapallidosa species for the country. Re­sults of this study provide efficient and effective rearing procedures which are requirement for both small-scale for fa­cilitating entomological research and large-scale use in justifiable vector control management such as disease model or Dengue control.

1. Fernández-Moreno MA, Farr CL, Kaguni LS, Garesse R (2007) Drosophila melano¬gaster as a model system to study mito¬chondrial biology. Methods Mol Biol. 370: 33–49.
2. Wollard L, Klein B, Carlson DJ, Carlson KA (2006) Rearing media as a variable in fruit fly fecundity: an activity to intro¬duce scientific methods of inquiry to bi¬ology students. Bioscene. 32(3): 24–29.
3. Ashburner M, Roote J (2000) Culture of Drosophila: The laboratory setup. adapted from “Laboratory Culture of Dro¬soph¬ila,” chapter 35, in Drosophila Protocols (eds Sullivan et al.) Cold Spring Harbor La¬boratory Press, Cold Spring Harbor, NY, USA. pdb.ip34.
4. Bridges CB, Darby HH (1933) Culture me-dia for Drosophila and the pH of media. Am Nat. 67: 437–472.
5. Ugur B, Chen K, Bellen HJ (2016) Dro-soph¬ila tools and assays for the study of hu¬man diseases. Dis Model Mech. 9(3): 235–244.
6. Mirzoyan Z, Sollazzo M, Allocca M, Valen¬za AM, Grifoni D, Bellosta P (2019) Dro¬sophila melanogaster: A model organ¬ism to study cancer. Front Genet. 10: 51.
7. Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, Pauls SU, Kelley JL, Frandsen PB (2021) Long reads are rev¬olutionizing 20 years of insect genome sequencing. Genome Biol Evol. 13(8): evab138.
8. Teixeira L, Ferreira Á, Ashburner M (2008) The bacterial symbiont Wolbachia in¬duc-es resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6 (12): e2.
9. Pimentel AC, Cesar CsS, Martins M, Cogn R (2021) The antiviral effects of the sym¬biont bacteria Wolbachia in insects. Front Immunol. 11: 626329.
10. Hedges LM, Brownlie JC, O'neill SL, John¬son KN (2008) Wolbachia and virus pro¬tection in insects. Science. 322(5902): 702.
11. Panteleev DI, Goryacheva I, Andrianov BV, Reznik N, Lazebny O, Kulikov A (2007) The endosymbiotic bacterium Wolbach¬ia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ J Genet. 43: 1066–1069.
12. Schnettler E, Sreenu VB, Mottram T, McFar¬lane M (2016) Wolbachia re¬stricts insectspecific flavivirus infection in Ae-des aegypti cells. J Gen Virol. 97(11): 3024–3029.
13. Joshi D, Pan X, McFadden MJ, Bevins D, Liang X, Lu P, Thiem S, Xi Z (2017) The maternally inheritable Wolbachia wAlbB induces refractoriness to Plasmodium berghei in Anopheles stephensi. Front Mi¬crobiol. 8: 366.
14. Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL (2011) Wolbachia infections are virulent and inhibit the human ma¬lar-ia parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 7(5): e1002043.
15. Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z (2013) Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 340 (6133): 748–751.
16. Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits Plas¬modium development in Anopheles gam¬biae. PLoS Pathog. 6(10): e1001143.
17. Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-short¬ening Wolbachia and reduced filarial com¬petence in mosquitoes. Science. 326 (5949): 134–136.
18. Andrews ES, Crain PR, Fu Y, Howe DK, Dobson SL (2012) Reactive oxygen spe-cies production and Brugia pahangi sur-vivorship in Aedes polynesiensis with ar-tificial Wolbachia infection types. PLoS Pathog. 8(12): e1003075.
19. Sasaki T, Ishikawa H (2000) Transin¬fec-tion of Wolbachia in the mediterranean flour moth, Ephestia kuehniella, by em-bry¬onic microinjection. Heredity (Edinb). 85 (Pt 2): 130–135.
20. Flores HA, Taneja de Bruyne J, O'Donnell TB, Tuyet Nhu V, Thi Giang N, Thi Xuan Trang H, Thi Thuy Van H, Thi Long V, Thi Dui L, Le Anh Huy H, Thi Le Duy¬en H, Thi Van Thuy N, Thanh Phong N, Van Vinh Chau N, Thi Hue Kien D, Thuy Vi T, Wills B, O'Neill SL, Simmons CP, Carrington LB (2020) Multiple Wolbach¬ia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog. 16(4): e1008433.
21. Yen PS, Failloux AB (2020) A review: Wolbachia-based population replace-ment for mosquito control shares common points with genetically modified control approaches. Pathogens. 9(5): 404.
22. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoff¬mann AA (2011) The wMel Wolbach¬ia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476 (7361): 450–453.
23. Xi Z, Dobson SL (2005) Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cyto-plasm and embryo homogenate. Appl En¬viron Microbiol. 71(6): 3199–3204.
24. Hoffmann A, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Dro-sophila simulans. Genetics. 126(4): 933–948.
25. Yuzuki K, Tidon R (2020) Identification key for drosophilid species (Diptera, Dro¬sophilidae) exotic to the neotropical re¬gion and occurring in Brazil. Rev Bras entomol. 64(1): e2019100.
26. Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V (1987) A ribosomal RNA gene probe dif¬ferentiates member species of the Anoph¬eles gambiae complex. Am J Trop Med Hyg. 37: 37–41.
27. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mi¬tochondrial gene sequences and a com¬pi¬lation of conserved polymerase chain re¬action primers. Ann Entomol Soc Am. 87 (6): 651–701.
28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable gen¬er-ation of high-quality protein multiple se-quence alignments using Clustal Ome¬ga. Mol Syst Biol. 7(1): 539.
29. Chaudhary GR, Pandey A, Singh A, Yadav V, Dwivedi V, Arya R, Lakhotiaet SC (2021) Experiments with Drosophila for biology courses (Eds: S. C. Lakhotia and H. A. Ranganath) Indian Academy of Sci¬ences, Bengaluru, India, pp. 21–31.
30. Dhami MK, Kumarasinghe L (2014) A HRM real-time PCR assay for rapid and specific identification of the emerging pest spotted-wing Drosophila (Drosophila su¬zukii). PLoS One. 9(6): e98934.
31. Kim S, Tripodi AD, Johnson DT, Szalansk AL (2014) Molecular diagnostics of Dro¬sophila suzukii (Diptera: Drosophilidae) using PCR-RFLP. J Econ Entomol. 107 (3): 1292–1294.
32. Kim HJ, Shin SE, Ko KS, Park SH (2020) The application of mitochondrial COI gene-based molecular identification of fo¬rensically important scuttle flies (Dip-tera: Phoridae) in Korea. Biomed Res Int. 2020: 6235848.
33. Talebzadeh F, Oshaghi MA, Akbarzadeh K, Panahi-Moghadam S (2020) Molecular spe¬cies identification of six forensically important iranian flesh flies (Diptera). J Arthropod Borne Dis. 14(4): 416–424.
34. Flagg RO (2005) Carolina Drosophila Man¬ual. Carolina Biological Supply Com¬pa¬ny, Burlington.
35. Ashburner M (1989) Drosophila, a labor-atory handbook. Cold Spring Harbor La-boratory Press, New York.
36. Markow TA, O'Grad PM (2016) Dro¬soph-ila: A guide to species identification and use. Elsevier, Netherlands.
37. Parchami-Araghi M, Gilasian E, Bächli G (2016) Drosophilids of the lake urmia na¬tional park, Iran (Diptera: Drosophilidae). Dros Inf Serv. 99: 63–69.
38. Ghavami MB, Djalilvand A (2015) First rec¬ord of urogenital myiasis induced by Me¬gaselia scalaris (Diptera: Phoridae) from Iran. J Arthropod-Borne Dis. 9(2): 274–280.
39. Oshaghi MA, Yaaghoobi F, Abai MR (2006) Pattern of mitochondrial DNA variation between and within Anopheles stephensi (Diptera: Culicidae) biological forms sug¬gests extensive gene flow. Acta Trop. 99 (2–3): 226–233.
40. Oshaghi MA, Shemshad K, Yaghoobi-Er-shadi MR, Pedram M, Vatandoost H, Abai MR, Akbarzadeh K, Mohtarami F (2007) Genetic structure of the malaria vector Anopheles superpictus in Iran using mi¬tochondrial cytochrome oxidase (COI and COII) and morphologic markers: a new species complex? Acta Trop. 101(3): 241–248.
41. Karimian F, Oshaghi MA, Sedaghat MM, Waterhouse RM, Vatandoost H, Hanafi-Bojd AA, Maleki-Ravasan N, Chavshin AR (2014) Phylogenetic analysis of the Oriental-Palearctic-Afrotropical members of Anopheles (Culicidae: Dip-tera) based on nuclear rDNA and mito-chondrial DNA characteristics. Jpn J In-fect Dis. 67(5): 361–367.
42. Hashemi-Aghdam SS, Oshaghi MA (2015) A checklist of Iranian cockroaches (Blat¬todea) with description of Polyphaga sp as a new species in Iran. J Arthropod Borne Dis. 9(2): 161–75.
43. Hashemi-Aghdam SS, Rafie G, Akbari S, Oshaghi MA (2017) Utility of mtDNA-COI barcode region for phylogenetic re-lationship and diagnosis of five common pest cockroaches. J Arthropod Borne Dis. 11(2): 182–193.
44. Khanzadeh F, Khaghaninia S, Maleki-Rav¬asan N, Oshaghi MA, Adler PH (2020) Black flies (Diptera: Simuliidae) of the Aras River Basin: species composition and floral visitation. Acta Trop. 209: 105536.
45. Koosha M, Oshaghi MA, Sedaghat MM, Vatandoost H, Azari-Hamidian S, Abai MR, Hanafi-Bojd AA, Mohtarami F (2017) Sequence analysis of mtDNA COI barcode region revealed three hap-lo¬types within Culex pipiens assemblage. Exp Par¬asitol. 181(1848): 102–110.
46. Jafari S, Oshaghi MA, Akbarzadeh K, Abai MR, Koosha M, Mohtarami F (2019) Iden¬tification of forensically important flesh flies using the cytochrome c oxidase sub¬units I and II genes. J Med Entomol. 56 (5): 1253–1259.
47. Bazrafkan S, Vatandoost H, Heydari A, Bakh¬shi H, Panahi-Moghadam S, Hash-e¬mi-Aghdam S, Mohtarami F, Rahimi-foroushan A, Anlaandş S, Shayeghi M, Oshaghi MA, Abtahi SM (2016) Dis-crim¬ination of Paederus fuscipes and Pae¬de¬rus littoralis by mtDNA-COI PCR-RFLP. J Arthropod Borne Dis. 10(4): 454–461.
48. Ashburner M, Carson HL, Thompson JN (1981) The genetics and biology of Dro-sophila. London, Academic Press. 3.
49. Wegner G (2007) Pest spotlight: Dark-eyed vinegar flies. Available at: http://www.mypmp.net/technology/pest-spotlight-dark-eyed-vinegar-flies.
50. Harrington LC, Axtell RC (1994) Com-par¬isons of sampling methods and seasonal abundance of Drosophila repleta in caged-layer poultry houses. Med Vet Entomol. 8(4): 331–339.
51. Pimentel D, Fay RW (1995) Dispersion of radioactively tagged Drosophila from pit privies. J Econ Entomol. 48: 19–22.
52. Ewing WH (1962) Sources of Escherichia coli cultures that belonged to O antigen groups associated with infantile diar¬rhe-al disease. J Infect Dis. 110(2): 114–120.
53. Black E, Ecolab, Hinrichs GJ, Barcay SJ, Gardner DB (2018) Fruit flies as poten-tial vectors of foodborne illness. J Food Prot. 81(3): 509–514.
54. Spicer GS, Pitnick S (1996) Molecular sys-tematics of the Drosophila hydei sub-group as inferred from mitochondrial DNA se¬quences. J Mol Evol. 43(3): 281–286.
55. Pitnick S, Markow TA (1994) Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm. Proc Natl Acad Sci U S A. 91(20): 9277–9281.
56. Zhao L, Begun DJ (2017) Genomics of par¬allel adaptation at two timescales in Dro¬sophila. PLoS Genet. 13(10): e1007016.
57. Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell P, Lang M, Courtier-Orgogozo V, David JR, Petrov D, Matute DR, Schrid¬er DR, Comeault AA (2022) Wide¬spread introgression across a phylogeny of 155 Drosophila genomes. Curr Biol. 32(1): 111–123.e5.
58. Bock IR, Wheeler M (1972) The Dro-sophila melanogaster species group. Unv Texas Publ. 7213: 1–102.
59. Tobari YN (1993) Geographic distri¬bu-tion. In “Drosophia ananassae: genetical and biological aspects. Japan Sci Soc Press, Tokyo. 1993: 19–22.
60. Matsuda M, Ng C-S, Doi M, Kopp A, To-bari YN (2009) Evolution in the Dro-soph¬ila ananassae species subgroup. Fly. 3 (2): 157–169.
61. McEvey S, Schiffer M (2015) New spe-cies in the Drosophila ananassae subgroup from northern Australia, New Guinea and the south Pacific (Diptera: Droso¬philidae), with historical overview. Rec Austral Mus. 67(5): 129–161.
62. Sawamura K, Sato H, Lee C-Y, Kami-mura Y, Matsuda M (2016) A natural popu¬la¬tion derived from species hybridi-zation¬in the Drosophila ananassae species com¬plexon Penang Island, Malaysia. Zool Sci. 33(5): 467–475.
63. Tavakoli M, Sattari S, Hosseini-Chegen A (2020) Additional records of the African fig fly Zaprionus indianus Gupta, 1970 (Diptera: Drosophilidae) for western Iran supported by DNA barcoding. J Animal Divers (JAD). 2(3): 16–23.
64. Kremmer L, David JR, Borowiec N, Thaon M, Ris N, Poirié M, Gatti JL (2017) The African fig fly Zaprionus indianus: a new invasive pest in France? Bull Insec¬tol¬ogy. 70(1): 57–62.
65. Kordshouli RS, Grzywacz A, Akbarzadeh K, Azam K, AliMohammadi A, Pasha MG, Oshaghi MA (2021) Thermal re-quire¬ments of immature stages of Chrysomya albiceps (Diptera: Calliphoridae) as a com¬mon forensically important fly. Sci Jus¬tice. 61(3): 227–234.
66. Shiravi A, Mostafavi R, Akbarzadeh K, Oshaghi MA (2011) Temperature re-quire¬ments of some common forensically im¬portant blow and flesh flies (Diptera) un¬der laboratory conditions. Iran J Arthro¬pod Borne Dis. 5(1): 54–62.
67. Oshaghi MA, Maleki-Ravasan N, Ja¬vadi¬an E, Rassi Y, Sadraei J, Enayati AA, Vatandoost H, Zare Z, Emami SN (2017) Application of predictive degree day mod¬el for field development of sandfly vec¬tors of visceral leishmaniasis in north¬west of Iran. J Vector Borne Dis. 46(4): 247–255.
68. Perez-Leanosa A, Loustalot-Laclettea MR, Nazario-Yepiza N, Markow TA (2017) Ectoparasitic mites and their Drosophila hosts. Fly. 11(1): 10–18.
Files
IssueVol 17 No 3 (2023) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v17i3.14983
Keywords
Fruit fly; Mass rearing; Wolbachia; Arboviruses; Iran

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Naseri-Karimi N, Vatandoost H, Sedaghat M, Moosa-Kazemi SH, Amidi F, Oshaghi M. Drosophila melanogaster Laboratory Rearing for Wolbachia-Based Control Programs, a Component of Dengue Control. J Arthropod Borne Dis. 2023;17(3):214–228.