Development and Optimization of a Nanoparticle-Based Imidacloprid Insecticide for Effective Control of Blattella germanica
Abstract
Background: The German cockroach (Blattella germanica) is a pest with a global distribution that has adapted to live in human environments. Blattella germanica threatens human health by producing asthma-inducing allergens, carrying pathogenic/antibiotic-resistant microbes, and contributing to unhealthy indoor environments. Effective application of insecticides can play an important role in cockroach control programs. The purpose of this research was to develop and optimize a nanoparticle-based imidacloprid insecticide and evaluate its effectiveness against the German cockroach.
Methods: A bioassay was conducted to determine the LC50 and LC90 of imidacloprid technical against adult German cockroaches. The appropriate initial concentration of 3mg/m2 was then utilized in the synthesis of nanoencapsulated imidacloprid via the ionic gelation method. The average particle size was determined using Dynamic Light Scattering (DLS) and the dried nanoparticles were analyzed using a Scanning Electron Microscope (SEM). The LC50 and LC90 values of Nano-imidacloprid were then compared with the technical grade of the insecticide.
Results: A comparison of the bioassay results for nanoencapsulated and imidacloprid technical revealed a superior insecticidal effect of the nanoencapsulated imidacloprid against the German cockroach. The LC50 value for the nanoencapsulated imidacloprid decreased from 4.656 to 3.081 mg/m2 and the LC90 value decreased from 8.381 to 4.486 mg/m2 when compared to imidacloprid technical.
Conclusion: The use of nanotechnology in insecticides can lead to increased efficacy and reduced consumption. This is because the smaller particle size of nanomaterials allows for better penetration and targeted delivery to pest organisms, reducing the overall amount needed for control.
2. Crawford JA, Rosenbaum PF, Anag¬nost SE, Hunt A, Abraham JL (2015) Indi-cators of airborne fun¬gal concentrations in urban homes: understanding the con-ditions that affect indoor fungal ex-posures. Sci Total Environ. 517: 113‒124.
3. Elgderi R, Ghenghesh K, Berbash N (2006) Carriage by the German cockroach (Blat-tella germanica) of multiple-antibiotic-resistant bacte¬ria that are potentially path¬ogenic to humans, in hospitals and house¬holds in Tripoli, Libya. Ann Trop Med Parasitol. 100(1): 55‒62.
4. Fakoorziba M, Eghbal F, Hassanza¬deh J, Moemenbellah-Fard M (2010) Cock-roach¬es (Periplaneta americana and Blat¬tella germani¬ca) as potential vectors of the pathogenic bacteria found in noso¬comial infections. Ann Trop Med Par¬asitol. 104(6): 521‒528.
5. Fathpour H, Emtiazi G, Ghasemi E (2003) Cockroaches as reservoirs and vectors of drug resistant Sal¬monella spp. Iran Biomed J. 7(1): 35‒38.
6. Menasria T, Moussa F, El-Hamza S, Tine S, Megri R, Chenchouni H (2014) Bac¬terial load of German cockroach (Blat¬tella germanica) found in hospital en-vironment. Pathog Glob Health. 108(3): 141‒147.
7. Menasria T, Samir TI, Mahcene D, Benam-mar L, Megri R, Boukoucha M, Debab¬za M (2015) External bacterial flora and an-timicrobial susceptibility patterns of Staph¬y¬lococcus spp. and Pseudomonas spp. isolated from two household cockroach¬es, Blattella germanica and Blatta ori¬en¬talis. Biomed En¬viron Sci. 28(4): 316‒320.
8. Pai H-H, Ko Y, Chen E (2003) Cockroach-es (Periplaneta ameri¬cana and Blattella germanica) as potential mechanical dis-semina¬tors of Entamoeba histolytica. Ac¬ta Trop. 87(3): 355‒359.
9. Pomés A, Mueller GA, Randall TA, Chap-man MD, Arruda LK (2017) New in-sights into cockroach aller¬gens. Curr Al-lergy Asthma Rep. 17: 1‒16.
10. Smith DD, Frenkel J (1978) Cock¬roach¬es as vectors of Sarcocystis muris and of other coccidia in the laboratory. J Par-asitol. 64(2): 315‒319.
11. Zurek L, Schal C (2004) Evalua¬tion of the German cockroach (Blattella germani¬ca) as a vector for verotoxigenic Esche¬rich¬ia coli F18 in confined swine pro¬duc¬tion. Vet Microbiol. 101(4): 263‒267.
12. Zarchi AAK, Vatani H (2009) A survey on species and prevalence rate of bacterial agents isolated from cockroaches in three hospi¬tals. Vector Borne Zoonotic Dis. 9 (2): 197‒200.
13. Akbari S, Oshaghi MA, Hashemi-Agh¬dam SS, Hajikhani S, Oshaghi G, Shirazi MH (2015) Aerobic bacterial community of American cockroach Periplaneta ameri-cana, a step toward finding suitable par-atransgenesis candidates. J Ar¬thropod Borne Dis. 9(1): 35‒48.
14. Wang C, Lee CY, Rust MK (2021) Biol-ogy and management of the German cockroach: CABI publisher. New York, p. 304.
15. Chai RY, Lee CY (2010) Insecti¬cide re-sistance profiles and syner¬gism in field populations of the German cockroach (Dictyoptera: Blattellidae) from Singa-pore. J Econ Entomol. 103(2): 460‒471.
16. Hu I-H, Chen SM, Lee CY, Neoh KB (2020) Insecticide resistance, and its ef-fects on bait performance in field-col-lected German cock¬roaches (Blat¬todea: Ectobiidae) from Taiwan. J Econ Ento-mol. 113(3): 1389‒1398.
17. Scharf ME, Neal JJ, Marcus CB, Bennett GW (1998) Cytochrome P450 purifica-tion and immunolog¬ical detection in an insecticide re¬sistant strain of German cockroach (Blattella germanica, L.). In-sect Biochem Mol Biol. 28(1): 1‒9.
18. Ghaderi A, Baniardalani M, Basseri HR (2021) Level of pyre¬throid-resistance as-sociated with cytochrome P450 ex¬pres-sion in German cockroach, Blattella ger-manica (Blattodea: Ectobiidae) in the field collected strains. J Ar¬thropod Borne Dis. 15(2): 152‒161.
19. Madhuban G, Rajesh K, Arunava G (2012) Nano-pesticides-A re¬cent ap-proach for pest control. J Plant Prot Sci. 4(2): 1‒7.
20. An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C, Li X (2022) Na¬nomaterials and nan-otechnology for the delivery of ag¬ro-chemicals: strategies towards sustain¬a¬ble ag¬riculture. J Nanobiotechnology. 20 (1): 1‒19.
21. Bhattacharyya A, Bhaumik A, Ra¬ni PU, Mandal S, Epidi TT (2010) Nano-particles-A recent approach to insect pest control. Afr J Bio¬technol. 9(24): 3489‒3493.
22. Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019) Nano-based smart pesti¬cide formulations: Emerg¬ing op¬portunities for agriculture. J Con¬trol Release. 294: 131‒153.
23. Dangi K, Verma AK (2021) Effi¬cient and eco-friendly smart nano-pesticides: Emerg¬ing prospects for agriculture. Ma-ter To¬day: Pro¬ceedings. 45: 3819‒3824.
24. Liu X, He B, Xu Z, Yin M, Yang W, Zhang H, Cao J, Shen J (2015) A func-tionalized fluorescent dendrimer as a pesticide nanocarrier: applica¬tion in pest control. Na¬noscale. 7(2): 445‒449.
25. Plucinski A, Lyu Z, Schmidt BV (2021) Polysaccharide nanoparti¬cles: From fab-rication to applica¬tions. J Mater Chem C Mater. 9(35): 7030‒7062.
26. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising sys-tem in novel drug delivery. Chem Pharm Bull. 58(11): 1423‒1430.
27. Nuruzzaman M, Rahman MM, Liu Y, Nai-du R (2016) Nanoencapsu¬lation, nano-guard for pesticides: a new win¬dow for safe application. J Agric Food Chem. 64 (7): 1447‒1483.
28. Fojtová D, Vašíčková J, Grillo R, Bílková Z, Šimek Z, Neuwirthová N, Kah M, Hofman J (2019) Nanoformulations can significantly af¬fect pesticide degradation and uptake by earth¬worms and plants. Environ Chem. 16(6): 470‒481.
29. Elbert A, Becker B, Hartwig J, Erdelen C (1999) Imidacloprid-a new systemic in-secticide. Pflan¬zenschutz Nachr Bayer 44: 113–136.
30. Ladonni H (2001) Evaluation of three methods for detecting per¬methrin re-sistance in adult and nymphal Blattella germanica (Dic¬tyoptera: Blattellidae). J Econ En¬tomol. 94(3): 694‒697.
31. Choo LEW, Tang CS, Pang FY, Ho SH (2000) Comparison of two bioassay meth¬ods for determining deltamethrin re¬sistance in German cockroaches (Blat-todea: Blattelli¬dae). J Econ Entomol. 93 (3): 905‒910.
32. Keawchaoon L, Yoksan R (2011) Prepa-ration, characterization and in vitro re-lease study of carvacrol-loaded chitosan nanoparticles. Colloids and surfaces B: Biointer¬faces. 84(1): 163‒171.
33. Tao Z, Deng J, Wang Y, Chen H, Ding Y, Hua X, Wang M (2019) Com¬petitive immu¬noassay for simulta¬neous detec¬tion of imidacloprid and thiacloprid by upcon¬version nanoparticles and magnet-ic na¬no¬particles. Environ Sci Pollut Res Int. 26: 23471‒23479.
34. Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, Shafiei-Irannejad V, Zarghami N (2018) Nano-encapsulated metformin-curcumin in PLGA/PEG in-hibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol. 46(5): 917‒925.
35. Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z, Cui H (2018) Advances in tar¬geted pesticides with environmentally re¬spon-sive controlled release by nano¬technol-ogy. Nanomater. 8(2): 102.
36. Zha C, Turner M, Ray R, Liang D, Pietri JE (2023) Effects of copper and zinc ox-ide nanoparticles on German cockroach development, indoxacarb resistance, and bacteri¬al load. Pest Manag Sci. 79(8): 2944‒2950.
37. Yeguerman CA, Urrutia RI, Jesser EN, Massiris M, Delrieux CA, Murray AP, González JO (2022) Essential oils load-ed on polymeric nanopar¬ticles: bioeffi-cacy against econom¬ic and medical in-sect pests and risk evaluation on terres-trial and aquatic non-target organisms. En¬viron Sci Pollut Res Int. 29(47): 71412‒71426.
38. Yeguerman C, Jesser E, Massiris M, Del-rieux C, Murray AP, Gon¬zález JW (2020) Insecticidal ap¬plication of essen-tial oils loaded polymeric nanoparticles to con¬trol German cockroach: Design, char¬acterization and lethal/sublethal ef-fects. Ecotoxicol Environ Saf. 189: 110047.
39. Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and de-velopment in the German cockroach. Sci Total En¬viron. 565: 882‒888.
40. Madhavi V, Reddy A, Madhavi G, Reddy NB (2020) Nanoencapsula¬tion of pesti-cides: Sustainable per¬spective in agri-culture. AIP Conf Proc. 2280: 040029.
41. Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Prepara¬tion, charac-terization and efficien¬cy of nanoencap-sulated imidaclo¬prid under laboratory con¬ditions. Ecotoxicol Environ Saf. 107: 77‒83.
42. Adak T, Kumar J, Shakil N, Walia S (2012) Development of con¬trolled re-lease formulations of im¬idacloprid em-ploying novel nano-ranged amphiphilic polymers. J Environ Sci Health, Part B. 47(3): 217‒225.
43. Guan H, Chi D, Yu J, Li X (2008) A nov-el photodegradable insecti¬cide: Prepara-tion, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol. 92(2): 83‒91.
44. Chandra JH, Raj LA, Na¬masivayam SKR, Bharani RA (2013) Improved pesticidal activi¬ty of fungal metabolite from Nomure¬ae rileyi with chitosan na-noparticles. International Confer¬ence on Advanced Nanomaterials and Emerging Engineer¬ing Tech¬nologies; IEEE.
45. Paulraj MG, Ignacimuthu S, Gan¬dhi MR, Shajahan A, Ganesan P, Packiam SM, Al-Dhabi NA (2017) Com¬parative stud-ies of tripol¬yphos¬phate and glutarald¬e-hyde cross-linked chitosan-botanical pes¬ticide na¬noparticles and their agricultur¬al appli¬cations. Int J Biol Macromol. 104: 1813‒1819.
46. Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, Wei G, Dong P, Ren M (2021) Anti¬fungal activity of chitosan against Phytophthora in¬festans, the patho¬gen of potato late blight. Int J Biol Macromol. 166: 1365‒1376.
47. Hodes G (2007) When small is different: some recent advances in concepts and applications of na¬noscale phenomena. Adv Mater. 19(5): 639‒655.
Files | ||
Issue | Articles In Press | |
Section | Original Article | |
Keywords | ||
Nanoparticle; Imidacloprid; Insecticide; German cockroach |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |