Comparative Effects of Elettaria cardamomum Essential Oil and Its Nanoliposomal State on Mortality of Anopheles stephensi Larvae
Abstract
Background: Malaria has remained the most dreadful vector-borne disease; hence, vector control is the most affordable and achievable approach to mitigate the disease burden. Due to the emergence of resistance and environmental pollution, herbal larvicides are considered an alternative to chemical types. Also, nanotechnology has been proposed as a promising solution to improve the efficiency of plant larvicides. This study aimed to develop an effective herbal larvicide.
Methods: The chemical composition of Elettaria cardamomum essential oil (EO) was first investigated. Nanoliposomes containing the EO were then prepared using the ethanol injection method. After that, the larvicidal efficacy of the EO and its liposomal state were compared against Anopheles stephensi in laboratory conditions.
Results: Alpha-terpinyl acetate (77.59%), eucalyptol (4.38%), nerolidol (2.96%), linalool (1.77%), and limonene (1.69%) were the five major compounds of the EO. Nanoliposomes containing the EO with a particle size of 73±5 nm and a zeta potential of -16.3±0.8 mV were prepared. Additionally, the ATR-FTIR analysis verified the successful loading of the EO into nanoliposomes. The larvicidal activity of nanoliposomes exhibited remarkable potency, with an LC50 value of 14.35 (10–18) µg/mL, significantly more potent than the non-formulated EO, which had an LC50 value of 33.47 (28–39) µg/mL against Anopheles stephensi larvae.
Conclusion: The nanoliposomes containing E. cardamomum EO showed promising efficacy against An. stephensi larvae. It could thus be considered for further application against other species of mosquitoes.
2. Ahn J, Sinka M, Irish S, Zohdy S (2023) Modeling marine cargo traffic to identi-fy countries in Africa with greatest risk of invasion by Anopheles stephensi. Sci
Rep. 13(1): 876.
3. Yukich JO, Lengeler C, Tediosi F, Brown N, Mulligan JA, Chavasse D, Stevens W, Justino J, Conteh L, Maharaj R, Erskine M, Mueller DH, Wiseman V, Ghe¬bremes¬kel T, Zerom M, Goodman C, McGuire D, Urrutia JM, Sakho F, Hanson K, Sharp B (2008) Costs and consequences of large-scale vector control for malaria. Malar J. 7(1): 258.
4. Nalinya S, Musoke D, Deane K (2022) Ma-laria prevention interventions beyond long-lasting insecticidal nets and indoor re¬sidual spraying in low- and middle-income coun¬tries: a scoping review. Malar J. 21(1): 31.
5. Moemenbellah-Fard MD, Shahriari-Namadi M, Kelidari HR, Nejad ZB, Ghasemi H, Osanloo M (2021) Chemical composi-tion and repellent activity of nine medicinal essential oils against Anopheles stephen¬si, the main malaria vector. Int J Trop Insect Sci. 41(2): 1325–1332.
6. Nejati J, Moosa-Kazemi SH, Oshaghi MA, Badzohre A, Pirmohammadi M, Saeidi Z, Naseri-Karimi N, Parkhideh SZ, Vatan¬doost H (2021) Insecticide resistance sta¬tus of malaria vectors in a malarious ar¬ea, southeast of Iran. J Arthropod Borne Dis. 15(3): 278–286.
7. Gorouhi MA, Oshaghi MA, Vatandoost H, Enayati AA, Raeisi A, Abai MR, Salim-Abadie Y, Hanafi-Bojd AA, Paksa A, Nik¬poor F (2018) Biochemical basis of cyfluth¬rin and DDT resistance in Anoph-eles stephensi (Diptera: Culicidae) in ma-larious area of Iran. J Arthropod Borne Dis. 12(3): 310–320.
8. Gorouhi MA, Vatandoost H, Oshaghi MA, Raeisi A, Enayati AA, Mirhendi H, Hanafi-Bojd AA, Abai MR, Salim-Ab-adi Y, Rafi F (2016) Current susceptibil-ity status of Anopheles stephensi (Dip-tera: Culicidae) to different imagicides in a malarious area, southeastern of Iran. J Arthropod Borne Dis. 10(4): 493–500.
9. Soltani A, Vatandoost H, Oshaghi MA, Ma¬-leki-Ravasan N, Enayati AA, Asgarian F (2015) Resistance mechanisms of Anoph¬eles stephensi (Diptera: Culicidae) to temeph¬os. J Arthropod Borne Dis. 9(1): 71–83.
10. Pavela R (2015) Essential oils for the de-velopment of eco-friendly mosquito lar-vicides: A review. Ind Crops Prod. 76: 174–187.
11. Pavela R, Maggi F, Iannarelli R, Benelli G (2019) Plant extracts for developing mos¬quito larvicides: from laboratory to the field, with insights on the modes of ac¬tion. Acta Trop. 193: 236–271.
12. Osanloo M, Ghaznavi G, Abdollahi A (2020) Sureveying the chemical compo-sition and antibacterial activity of essen-tial oils from selected medicinal plants against human pathogens. Iran J Micro-biol. 12(6): 505–512.
13. Noorpisheh Ghadimi S, Sharifi N, Osanloo M (2020) The leishmanicidal activity of essential oils: A systematic review. J Herb Med Pharmacol. 9(4): 300–308.
14 Mallick S (2022) Larvicidal potential of rhizome extracts of Elettaria carda-momum (L.) Maton against filarial vector, Culex quinquefasciatus Say, 1823 (Diptera: Cu¬licidae). Entomon. 47(1): 51–60.
15. Das R, Pal P, Bhutia S (2021) Pharma¬cog-nostical characterization and formula¬tion of herbal-based low-cost mosquito re¬pel-lents from Elettaria cardamomum (Linn.) seed by using natural binder. Future J Pharm Sci. 7(1): 1–10.
16. Hosseinizadeh Z, Osanloo M, Alipour H, Heiran R, Shahriari-Namadi M, Moemenbel¬lah-Fard MD (2023) Nanolip¬osomal Trachyspermum ammi (L) spra¬gue essential oil for effective control of malaria mosquito larvae, Anopheles ste¬phensi Liston. Exp Parasitol. 255: 108644.
17. Sanei-Dehkordi A, Heiran R, Montaseri Z, Elahi N, Abbasi Z, Osanloo M (2023) Promising larvicidal effects of nanolip-osomes containing carvone and Mentha spicata and Tanacetum balsamita essen-tial oils against Anopheles stephensi. Ac-ta Parasitol. Available at: https://media.malariaworld.org/s11686_023_00735_5_eece28d228.pdf
18. Zarenezhad E, Sanei-Dehkordi A, Babaaliza¬deh B, Qasmei H, Osanloo M (2023) Re¬pellent efficacy of the nanogel contain¬ing Acroptilon repens essential oil in com¬parison with DEET against Anopheles ste¬phensi. BMC Res Notes. 16(1): 261.
19. Sanei-Dehkordi A, Moemenbellah-Fard MD, Saffari M, Zarenezhad E, Osanloo M (2022) Nanoliposomes containing lim-o¬nene and limonene-rich essential oils as novel larvicides against malaria and fil-ariasis mosquito vectors. BMC Com¬ple-ment Med Ther. 22(1): 140.
20. World Health Organization (2005) Guide-lines for laboratory and field testing of mosquito larvicides. World Health Or-gan¬ization. Available at: https://apps.who.int/iris/handle/10665/69101.
21. Finney D (1971) Probit analysis, Cam-bridge University Press. Cambridge, UK. Available at: https://www.amazon.com/ProbitAnalysis-David-Finney/dp/0521135907.
22. Chellappandian M, Thanigaivel A, Vasan-tha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S (2017) Toxicological effects of Sphaeranthus indicus Linn. (Aster¬aceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ Sci Pollut Res. 25(11): 10294–10306.
23. Sumitha KV, Thoppil JE (2016) Larvi¬cid¬al efficacy and chemical constituents of O. gratissimum L. (Lamiaceae) essential oil against Aedes albopictus Skuse (Dip¬tera: Culicidae). Parasitol Res. 115(2): 673–680.
24. Jankowska M, Rogalska J, Wyszkowska J,
Stankiewicz M (2017) Molecular targets for components of essential oils in the in¬sect nervous system-a review. Mole-cules. 23(1): 34.
25. Lin Y, Wang Y, Lv J, Wang N, Wang J, Li M (2019) Targeted acetylcho¬lines¬ter-ase-responsive drug carriers with long du¬ra¬tion of drug action and reduced hepa¬totox¬i¬ci¬ty. Int J Nanomedicine. 14: 5817–5829.
26. Chen S, Luetje CW (2013) Phenyl¬thio-phene¬carboxamide antagonists of the olfactory receptor co-receptor subunit from a mos¬quito. PloS one. 8(12): e84575.
27. Chen S, Luetje CW (2014) Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit. F1000Res. 3: 84.
28. Gao Y, Zhang Y, Wu F, Pei J, Luo X, Ju X, Zhao C, Liu G (2020) Exploring the in¬ter¬action mechanism of desmethyl-broflan¬ilide in insect GABA receptors and screen¬ing potential antagonists by In silico sim¬ulations. J Agric Food Chem. 68(50): 14768–14780.
29. Walsh P, Vanderlee G, Yau J, Campeau J, Sim VL, Yip CM, Sharpe S (2014) The mechanism of membrane disruption by cytotoxic amyloid oligomers formed by prion protein (106–126) is dependent on bilayer composition. J Biol Chem. 289 (15): 10419–10430.
30. Kato-Namba A, Iida T, Ohta K, Suzuki M, Saito K, Takeuchi K, Sakamoto M, Ka¬zama H, Nakagawa T (2023) Surfactants alter mosquito’s flight and physical con¬dition. Sci Rep. 13(1): 2355.
31. Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mi¬tochondria: A nexus of cellular homeo¬sta¬sis. Redox Biol. 6: 472–485.
32. Ahmed S, Sajjadian SM, Kim Y (2022) HMGB1-like dorsal switch protein 1 trig¬gers a damage signal in mosquito gut to activate dual oxidase via eicosanoids. J Innate Immun. 14(6): 657–672.
33. Santos GK, Dutra KA, Lira CS, Lima BN,
Napoleão TH, Paiva PM, Maranhão CA, Brandão SS, Navarro DM (2014) Ef-fects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules. 19(10): 16573–16587.
34. Budiman, Ishak H, Stang, Ibrahim E, Daud A, Amiruddin R (2021) Essential oil as a new tool for larvicidal Aedes aegypti: A systematic review. Gac Sanit. 35: S459–S462.
35. Pereira Filho AA, Pessoa GCD, Yama¬gu-chi LF, Stanton MA, Serravite AM, Pe-reira RHM, Neves WS, Kato MJ (2021) Larvicidal activity of essential oils from piper species against strains of Aedes ae-gypti (Diptera: Culicidae) resistant to py-rethroids. Front Plant Sci. 12: 685864.
36. Jyoti, Singh NK, Singh H, Mehta N, Rath SS (2019) In vitro assessment of syner-gistic combinations of essential oils against Rhipicephalus (Boophilus) microplus (Ac¬ari: Ixodidae). Exp Parasitol. 201: 42–48.
37. Sanei-Dehkordi A, Ghasemian A, Za-renezhad E, Qasemi H, Nasiri M, Osanloo M (2023) Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes ae¬gypti and Anopheles stephensi. Sci Rep. 13(1): 11002.
38. Sanei-Dehkordi A, Heiran R, Moemenbel-lah-Fard MD, Sayah S, Osanloo M (2022) Nanoliposomes containing carvacrol and carvacrol-rich essential oils as effective mosquitoes larvicides. BioNanoScience. 12(2): 359–369.
39. Sanei-Dehkordi A, Heiran R, Roozitalab G, Elahi N, Osanloo M, Galvão C (2022) Larvicidal effects of nanoliposomes con¬taining clove and cinnamon essential oils, eugenol, and cinnamaldehyde against the main malaria vector, Anopheles ste¬phensi Liston. Psyche (Camb Mass). 2022: 1–8.
40. Sanei-Dehkordi A, Agholi M, Shafiei M, Osanloo M (2022) Promising larvicidal efficacy of solid lipid nanoparticles con-taining Mentha longifolia L., Mentha pulegi¬um L., and Zataria multiflora Boiss. essential oils against the main malaria vector, Anopheles stephensi Liston. Acta Parasitol. 67(3): 1265–1272.
41. Pavoni L, Pavela R, Cespi M, Bonacucina G, Maggi F, Canale A, Lucchi A, Bru-schi F, Benelli G (2019) Green micro-and nanoemulsions in the fight against parasites, insect pests and vectors. J Bi-otechnol. 305: S27–S28.
42. Sanei-Dehkordi A, Moemenbellah-Fard MD, Sereshti H, Shahriari-Namadi M, Zarenezhad E, Osanloo M (2021) Chi-tosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylan-icum essential oils; repellent and larvi-cidal effects against a malaria mosquito vector, and cytotoxic effects on a human skin normal cell line. Chem Pap. 75: 6545–6556.
43. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 108: 303–318.
44. Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery sys¬tem. Colloids Surf A Physicochem Eng Asp. 350(1–3): 57–62.
Files | ||
Issue | Vol 17 No 4 (2023) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/jad.v17i4.15300 | |
Keywords | ||
Mosquito-borne diseases Malaria Nanotechnology Cardamom |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |