Original Article

Assessing Survival of Transgenic Bacteria, Serratia AS1 and Enterobacter cloacae, in Sugar Bait, White Saxaul Plant (Haloxylon persicum) and Rodent Barrow’s Soil, A Contained-Field Study for Paratransgenesis Approach

Abstract

Background: The viability and persistence of engineered bacterium candidates in field conditions is one of the consid­erable challenges in the paratransgenesis approach to fighting vector-borne diseases.
Methods: In this study two engineered bacterium candidates to produce paratransgenic sand flies, Serratia AS1 and Enterobacter cloacae expressing m-Cherry fluorescent were applied on the leaves of the white saxaul plant (Haloxylon persicum), sugar bait, and rodent burrow soil and their persistent time was tested in desert condition, Matin Abad Coun­ty, Isfahan, August 2022. A PBS suspension of 109 cells/ml was used for sugar bait, spraying on plant leaves (~10 cm2) and 10 cm2 of rodent burrow soil. Sand fly samples were taken daily and were plated on LB Agar and the fluorescent cells were counted after 24 hours.
Results: Time course in general caused a decrease in the number of bacteria for both strains. The two strains were per­sistent in sugar bait and on plant leaves for four days and on soil for two days. Although there were slight differences between the number of the bacteria in sugar baits, which was not significant (P< 0.05). The number of E. cloacae sur­viving on plant and in soil were significantly (P< 0.0001 and P= 0.046) higher than Serratia AS1.
Conclusion: This study shows that plants or sugar bait are useful routes for delivery of the transformed bacteria for the paratransgenesis approach, although, the bacteria ought to be sprayed on plants or sugar baits should be replaced with new ones in four days intervals.

1. Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, Durvasula R (2011) Paratransgenic Control of Vector Borne Diseases. Int J Biol Sci. 7(9): 1334–1344.
2. Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB (2022) The Strategy of Paratransgenesis for the Control of Malaria Transmission. Front Trop Dis. 3: 867104.
3. Wilke ABB, Marrelli MT (2015) Para-transgen¬esis: a promising new strategy for mosquito vector control. Parasit Vec-tors. 8: 342.
4. Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB (2022) Overview of para-transgenesis as a strategy to control path¬ogen transmission by insect vectors. Par¬asit Vectors. 15(1): 112.
5. Oshaghi MA, Rassi Y, Tajedin L, Abai MR, Akhavan AA, Enayati A, Moh¬tarami F (2011) Mitochondrial DNA di¬versity in the populations of great gerbils, Rhom-bomys opimus, the main reservoir of cu-taneous leishmaniasis. Acta Trop. 119 (2–3): 165–171.
6. Rassi Y, Oshaghi MA, Azani SM, Abaie MR, Rafizadeh S, Mohebai M, Moh-tarami F, Zeinali Mk (2011) Molecular detection of Leishmania infection due to Leishmania major and Leishmania tu-ran¬ica in the vectors and reservoir host in Iran. Vector Borne Zoonotic Dis. 11 (2): 145–150.
7. Hajjaran H, Mohebali M, Abai MR, Oshaghi MA, Zarei Z, Charehdar S, Mirjalali H, Sharifdini M, Teimouri A (2013) Natu¬ral infection and phylogenetic classifica¬tion of Leishmania spp. infecting Rhom¬bomys opimus, a primary reservoir host of zoonotic cutaneous leishmaniasis in Northeast Iran. Trans R Soc Trop Med Hyg. 107(9): 550–557.
8. Bakhshi H, Oshaghi MA, Abai MR, Rassi Y, Akhavan AA, Mohebali M, Hajaran H, Mohtarami F, Mirzajani H, Maleki-Ravasan N (2013) MtDNA CytB Struc-ture of Rhombomys opimus (Rodentia: Gerbellidae), the Main Reservoir of Cu-taneous Leishmania¬sis in the Borderline of Iran-Turkmenistan. J Arthropod Borne Dis. 7(2): 173–184.
9. Hajjaran H, Mohebali M, Teimouri A, Oshaghi MA, Mirjalali H, Kazemi-Rad E, Shiee MR, Naddaf SR (2014) Identi-fi¬cation and phylogenetic relationship of Iranian strains of various Leishmania spe¬cies isolated from cutaneous and vis-cer¬al cases of leish¬maniasis based on N-acetyl¬glucosamine-1-phosphate transfer-ase gene. Infect Genet Evol. 26: 203–212.
10. Yurchenko V, Chistyakov DS, Akhmad-ishina LV, Lukashev AN, Sádlová J, Strelko¬va MV (2023) Revisiting epide-mi¬ology of leishmaniasis in central Asia: les¬sons learnt. Parasitology. 150(2): 129–136.
11. Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafa¬ri R, Aminian K, Fazeli-Varzaneh RA, Dur¬vasula R (2015) Aerobic bacterial flo¬ra of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leish¬maniasis (ZCL) focus. Parasit Vec¬tors. 8: 63.
12. Ghassemi M, Akhavan AA, Zahraei-Ram-azani A, Yakhchali B, Arandian MH, Jafa¬ri R, Akhlaghi M, Shirani-Bidabadi L, Azam K, Koosha M, Oshaghi MA (2023) Rodents as vehicle for delivery of trans¬genic bacteria to make paratransgenic sand fly vectors of cutaneous leish¬man¬iasis in field condition. Sci Rep. 13(1): 14912.
13. Akhlaghi M (2017) Study on dynamics of modified bacteria (Enterobacter cloacae and Serratia AS1) in Phlebotomus pa¬pa-tasi, the main vector of zoonotic cu¬ta-neous leishmaniasis in Iran [MSc the¬sis]. School of Public Health, Teh¬ran Uni¬ver-sity of Medical Sciences, Iran.
14. Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Ja-cobs-Lorena M (2017) Driving mos¬qui¬to refractoriness to Plasmodium falci¬pa-rum with engineered symbiotic bacteria. Science. 357(6358): 1399–1402.
15. Müller GC, Revay EE, Schlein Y (2011) Relative attraction of the sand fly Phleboto¬mus papatasi to local flowering plants in the Dead Sea region. J Vector Ecol. 36 Suppl 1: S187–194.
16. Da Costa SG, Moraes CDS, Bates P, Dil-lon R, Genta FA (2019) Development of Leishmania mexicana in Lutzomyia long¬ipalpis in the absence of sugar feeding. Mem Inst Oswaldo Cruz. 114: e180482.
17. Killick-Kendrick R, Killick-Kendrick M (1987) Honeydew of aphids as a source of sugar for Phlebotomus ariasi. Med Vet Entomol. 1(3): 297–302.
18. Qualls WA, Müller GC, Khallaayoune K, Revay EE, Zhioua E, Kravchenko VD, Arheart KL, Xue RD, Schlein Y, Haus-mann A, Kline DL, Beier JC (2015) Con¬trol of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco. Par¬asit Vectors. 8: 87.
19. Saghafipour A, Vatandoost H, Zahraei-Ram¬azani AR, Yaghoobi-Ershadi MR, Rassi Y, Shirzadi MR, Akhavan AA (2016) Bi¬oassay evaluation of residual activity of attractive toxic sugar-treated barrier fence in the control of Phlebotomus papatasi (Diptera: Psy-chodidae). J Vector Borne Dis. 53(4): 335–340.
20. Saghafipour A, Vatandoost H, Zahraei-Ramazani AR, Yaghoobi-Ershadi MR, Rassi Y, Karami Jooshin M, Shirzadi MR, Akhavan AA (2017) Control of zo-onotic cutaneous leishmaniasis vector, Phleboto¬mus papatasi, using attractive toxic sugar baits (ATSB). PLoS One. 12(4): e0173558.
21. Gálvez R, Montoya A, Fontal F, Martínez De Murguía L, Miró G (2018) Control-ling phlebotomine sand flies to prevent canine Leishmania infantum infection: A case of knowing your enemy. Res Vet Sci. 121: 94–103.
22. Yousefi S, Zahraei-Ramazani AR, Rassi Y, Vatandoost H, Yaghoobi-Ershadi MR, Af¬latoonian MR, Akhavan AA, Aghaei-Af¬shar A, Amin M, Paksa A (2020) Evalu¬a¬tion of Different Attractive Traps for Cap¬tur¬ing Sand Flies (Diptera: Psy¬chodidae) in an Endemic Area of Leish¬maniasis, Southeast of Iran. J Arthropod Borne Dis. 14(2): 202–213.
23. Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA (2019) Deliv-ery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strat¬egies. Microb Ecol. 78(1): 185–194.
24. Abbasi R (2017) Determining the dynam-ics of the Entrobacter cloacae-RFP- De-fensin population in the gut of Phleboto-mus papatasi, vector for zoonotic cuta-ne¬ous leishmaniasis, and its effect on Leishmania major burden in the vector under laboratory condition. [MSc the-sis]. School of Public Health, Teh¬ran Univer¬sity of Medical Sciences, Iran.
25. Dehghan H, Oshaghi MA, Moosa-Kazemi SH, Yakhchali B, Vatandoost H, Ma-leki-Ravasan N, Rassi Y, Moham¬madza-deh H, Abai MR, Mohtarami F (2017) Dynamics of Transgenic Enterobacter clo¬acae Expressing Green Fluorescent Pro¬tein Defensin (GFP-D) in Anopheles ste¬phensi Under Laboratory Condition. J Art¬hropod Borne Dis. 11(4): 515–532.
26. Dehghan H (2017) Utility of para¬trans-gen¬ic Anopheles stephensi using recombi¬nant bacteria Enterobacter cloacae express¬ing defensin and scorpine to decrease ma¬lar¬ia vector capacity: [PhD dissertation]. School of Public Health, Tehran Univer¬sity of Medical Sciences, Iran.
27. Akhoundi M, Bakhtiari R, Guillard T, Baghaei A, Tolouei R, Sereno D, Tou¬bas D, Depaquit J, Abyaneh MR (2012) Di-versity of the bacterial and fungal mi¬cro-flora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran. PLoS One. 7(11): e50259.
28. Pires ACAM, Villegas LEM, Campolina TB, Orfanó AS, Pimenta PFP, Secun-dino NFC (2017) Bacterial diversity of wild-caught Lutzomyia longipalpis (a vec¬tor of zoonotic visceral leishmaniasis in Brazil) under distinct physiological con¬di¬tions by metagenomics analysis. Para¬sit Vectors. 10(1): 627.
29. Gunathilaka N, Perera H, Wijerathna T, Rodrigo W, Wijegunawardana NDAD (2020) The Diversity of Midgut Bacteria among Wild-Caught Phlebotomus ar-gen¬tipes (Psychodidae: Phlebotominae), the Vector of Leishmaniasis in Sri Lanka. Biomed Res Int. 2020: 5458063.
30. Karimian F, Koosha M, Choubdar N, Oshaghi MA (2022) Comparative anal-ysis of the gut microbiota of sand fly vectors of zoonotic visceral leish¬mani-asis (ZVL) in Iran; host-environment in-ter¬play shapes diversity. PLoS Negl Trop Dis. 16(7): e0010609.
31. Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R (2011) The paratransgenic sand fly: a platform for control of Leish-mania transmission. Parasit Vec¬tors. 4: 82.
32. Huang W, Vega-Rodriguez J, Kizito C, Cha SJ, Jacobs-Lorena M (2022) Combin¬ing transgenesis with paratransgenesis to fight malaria. Elife. 11: e77584.
33. Dehghan H, Mosa-Kazemi SH, Yakhchali B, Maleki-Ravasan N, Vatandoost H, Oshaghi MA (2022) Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae express-ing effector proteins in Anopheles ste-phensi. Parasit Vectors. 15(1): 63.
34. Yaghoobi-Ershadi MR, Akhavan AA, Zahraei-Ramazani AR, Jalali-Zand AR, Piazak N (2005) Bionomics of Phleboto-mus papatasi (Diptera: Psychodidae) in an endemic focus of zoonotic cutaneous leishmaniasis in central Iran. J Vector Ecol. 30(1): 115–8.
35. Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE (2003) Bacteria in midguts of field-col-lected Anopheles albimanus block Plas-modium vivax sporogonic development. J Med Entomol. 40(3): 371–374.
36. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Chris¬ten R, Morlais I (2012) Midgut mi¬crobiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 8(5): e1002742.
37. Sharma P, Sharma S, Maurya RK, Das De T, Thomas T, Lata S, Singh N, Pandey KC, Valecha N, Dixit R (2014) Salivary glands harbor more diverse microbial com¬munities than gut in Anopheles culic¬ifa¬cies. Parasit Vectors. 7: 235.
38. Maleki-Ravasan N, Oshaghi MA, Hajikhani S, Saeidi Z, Akhavan AA, Gerami-Shoar M, Shirazi MH, Yakhchali B, Rassi Y, Afshar D (2014) Microbial community of insectary population of Phlebotomus papatasi. J Arthropod-Borne Dis. 8(1): 69–81.
39. Martínez-García E, Calles B, Arévalo-Rodríguez M, de Lorenzo V (2011) pBAM1: an all-synthetic genetic tool for analysis and construction of complex bac¬terial phenotypes. BMC Microbiol. 11: 38.
40. Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between tem¬perature and growth rate of bacterial cul¬tures. J Bacteriol. 149(1): 1–5.
41. Bajard S, Rosso L, Fardel G, Flandrois JP (1996) Theparticular behaviour of Lis-teria monocytogenes under sub-optimal conditions. Int J Food Microbiol. 29: 201–211.
42. Padmanabhan P, Grosse J, Asad AB, Rad¬da GK, Golay X (2013) Gastrointestinal transit measurements in mice with 99 mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Res. 3: 60.
43. Müller GC, Schlein Y (2011) Different methods of using attractive sugar baits (ATSB) for the control of Phlebotomus papatasi. J Vector Ecol. 36 Suppl 1: S64–70.
44. Chirife J, Herszage L, Joseph A, Kohn ES (1983) In vitro study of bacterial growth inhibition in concentrated sugar solu-tions: microbiological basis for the use of sugar in treating infected wounds. An¬timicrob Agents Chemother. 23(5): 766–773.
45. Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, Rossi P, Cappelli A, Capone A, Peruzzi G, Val¬zano M, Picciolini M, Diabaté A, Fac¬chi¬nelli L, Ricci I, Favia G (2016) Para¬transgenesis to control malaria vectors: a semi-field pilot study. Para¬sit Vectors. 9: 140.
46. Arora AK, Forshaw A, Miller TA, Dur-vasula R (2015) A delivery system for field application of paratransgenic con-trol. BMC Biotechnol. 15: 59.
47. Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol. 49: 533–555.
48. Lindow SE, Brandl MT (2003) Microbi-ology of the phyllosphere. Appl Environ Microbiol. 69 (4): 1875–1883.
49. Solomon EB, Pang HJ, Matthews KR (2003) Persistence of Escherichia coli O157:H7 on lettuce plants following spray irrigation with contaminated water. J Food Prot. 66(12): 2198–2202.
50. Machado-Moreira B, Richards K, Abram F, Brennan F, Gaffney M, Burgess CM (2021) Survival of Escherichia coli and Listeria innocua on Lettuce after irri¬ga-tion with contaminated water in a tem-perate climate. Foods. 10(9): 2072.
51. England LS, Lee H, Trevors JT (1993) Bacterial survival in soil: Effect of clays and protozoa. Soil Biol Biochem. 25(5): 525–531.
52. Chen M, Alexander M (1973) Survival of soil bacteria during prolonged desic¬ca-tion. Soil Biol Biochem. 5(2): 213–221.
53. Barros N, Gomezorellana I, Feijoo S, Balsa R (1995) The effect of soil moisture on soil microbial activity studied by micro¬calorimetry. Thermochim Acta. 249: 161–168.
54. Dasgupta D, Brahmaprakash GP (2021) SoilmMicrobes are shaped by soil phys-ico-chemical properties: A brief review of existing literature. Int J Plant Soil Sci. 33(1): 59–71.
55. Shimoda T, Okubo T, Enoeda Y, Yano R, Nakamura S, Thapa J, Yamaguchi H (2019) Effect of thermal control of dry fomites on regulating the survival of human pathogenic bacteria responsible for nosocomial infections. PLoS One. 14(12): e0226952.
56. Havill NL, Boyce JM, Otter JA (2014) Ex¬tended survival of carbapenem-resistant Enterobacteriaceae on dry surfaces. In¬fect Control Hosp Epidemiol. 35(4): 445–447.
Files
IssueVol 18 No 1 (2024) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v18i1.15668
Keywords
Paratransgenesis Symbionts Sand fly Leishmaniasis Vector-borne diseases

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghassemi M, Akhavan AA, Zahraei-Ramezani A, Yakhchali B, Zarean MR, Jafari R, Oshaghi M. Assessing Survival of Transgenic Bacteria, Serratia AS1 and Enterobacter cloacae, in Sugar Bait, White Saxaul Plant (Haloxylon persicum) and Rodent Barrow’s Soil, A Contained-Field Study for Paratransgenesis Approach. J Arthropod Borne Dis. 2024;18(1):12–27.