Expression of Phlebotomus papatasi Salivary Protein 15 (PpSP15) in COS-7 Cells
Abstract
Background: Cutaneous leishmaniasis (CL) is a neglected tropical infection and the most prevalent vector-borne disease in Iran. There is no approved human vaccine and current treatments are restricted; some drugs are expensive and have notable side effects. Therefore, the need for the development of a safe and effective vaccine that can be produced at a low cost remains urgent. It has been shown that vaccinating animals with salivary gland homogenate or saliva components of sand flies protected against Leishmania infection. In this study, we aimed to prepare a mammalian expression vector encoding Phlebotomus papatasi salivary protein 15 (PpSP15) intended to be used as a DNA vaccine in our forthcoming studies. Methods: In this study, we designed and constructed pcDNA3. 1, a constitutive mammalian expression vector, to encode the immunogenic protein PpSP15. The presence of the target gene was confirmed by enzymatic digestion and sequencing. The mammalian COS-7 cells were transfected with the pcDNA3.1 vector and the expression of PpSP15 protein was then examined in the cell line using Western Blotting analysis. Results: Restriction enzyme digestion and sequencing revealed the correctly constructed pcDNA3.1-PpSP15. After the transfection of the COS-7 cell line with pcDNA3.1-PpSP15 using Linear Polyethylenimine, the PpSP15 protein expression was confirmed by western blot analysis using anti-His antibody. Conclusion: A high expression level of PpSP15 protein in COS-7 cells was achieved after the transfection of COS-7 cells, using cationic Linear Polyethylenimine. In subsequent research, this recombinant plasmid is supposed to be utilized as a candidate DNA vaccine to find its immunity induction in susceptible animal models.
1. Gradoni L (2018) A Brief Introduction to Leishmaniasis Epidemiology. In: Bruschi F, Gradoni L (Eds): The Leishmaniases: Old Neglected Tropical Diseases. Spring¬er International Publishing, pp. 1–13.
2. Beach R, Kjilu G, Leeuwenberg J (1985) Modification of sand fly biting behavior by Leishmania leads to increased para¬site transmission. J Trop Med Hyg. 34 (2): 278–282.
3. WHO (2023) Leishmaniasis [Internet]. Available at: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
4. Pearson RD, de Queiroz Sousa A (1996) Clinical spectrum of leishmaniasis. Clin Infect Dis. 22(1): 1–11.
5. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 7(5): e35671.
6. Razavi MR, Shirzadi MR, Mohebali M, Yaghoobi-Ershadi MR, Vatandoost H, Shirzadi M, Gouya MM, Gharachorloo F, Arshi Sh, Amiri B (2021) Human cu¬taneous leishmaniosis in Iran, up to date-2019. J Arthropod-Borne Dis. 15(2): 143.
7. Charlab R, Valenzuela JG, Rowton ED, Ri¬beiro JMC (1999) Toward an under¬standing of the biochemical and phar¬macological complexity of the saliva of a hematophagous sand fly Lutzomyia long¬ipalpis. Proc Natl Acad Sci. 96(26): 15155–15160.
8. Ribeiro JM, Rossignol PA, Spielman A (1986) Blood-finding strategy of a ca¬pillary-feeding sandfly, Lutzomyia long¬i¬palpis. Comp Biochem Physiol A Comp Physiol. 83(4): 683–686.
9. Thiakaki M, Rohousova I, Volfova V, Volf P, Chang KP, Soteriadou K (2005) Sand fly specificity of saliva-mediated protective immunity in Leishmania ama¬zonensis-BALB/c mouse model. Mi¬crobes Infect. 7(4): 760–766.
10. Wheat WH, Arthun EN, Spencer JS, Re¬gan DP, Titus RG, Dow SW (2017) Im¬munization against full-length protein and peptides from the Lutzomyia long¬ipalpis sand fly salivary component maxadi¬lan protects against Leishmania major infection in a murine model. Vac-cine. 35(48): 6611–6619.
11. Kamhawi S, Belkaid Y, Modi G, Row¬ton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 290(5495): 1351–1354.
12. Cunha JM, Abbehusen M, Suarez M, Valen¬zuela J, Teixeira CR, Brodskyn CI (2018) Immunization with LJM11 sali¬vary protein protects against infection with Leishmania braziliensis in the pres¬ence of Lutzomyia longipalpis saliva. Acta Trop. 177: 164–170.
13. Gomes R, Oliveira F (2012) The im¬mune response to sand fly salivary pro¬teins and its influence on Leishmania immun¬ity. Front Immunol. 3: 110–118.
14. Seyed N, Rafati S (2021) Th1 concomi¬tant immune response mediated by IFN-γ protects against sand fly delivered Leish¬mania infection: implications for vac¬cine design. Cytokine. 147: 155247.
15. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Her¬nández R, Pountain A, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: A 21st-century challenge. PLoS Negl Trop Dis. 11(12): e0006052.
16. Khamesipour A, Rafati S, Davoudi N, Ma¬boudi F, Modabber F (2006) Leish¬man¬iasis vaccine candidates for develop¬ment: a global overview. Indian J Med Res. 123(3): 423–438.
17. Moreno S, Timon M (2004) DNA vac¬cination: an immunological perspective. Inmunologia. 23(1): 41–55.
18. Morris S, Kelley C, Howard A, Li Z, Collins F (2000) The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine. 18(20): 2155–2163.
19. Lee J, Kumar SA, Jhan YY, Bishop CJ (2018) Engineering DNA vaccines against infectious diseases. Acta Biomater. 80: 31–47.
20. Prather KJ, Sagar S, Murphy J, Char¬train M (2003) Industrial scale produc¬tion of plasmid DNA for vaccine and gene therapy: plasmid design, produc¬tion, and purification. Enzyme Microb Technol. 33(7): 865–883.
21. Rosini E, Pollegioni L (2023) Opti¬mized rapid production of recombinant secret¬ed proteins in CHO cells grown in sus¬pension: The case of RBD. Biotechnol Appl Biochem. 70(2): 909–918.
22. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eu¬karyotic ribosomes. Cell. 44(2): 283–292.
23. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon en¬hance translation in mammalian cells. J Mol Biol. 196(4): 947–950.
24. Naaz S, Kazim SN (2018) Designing and reconstruction of pcDNA3.1 mammali¬an expression vector with its multiple cloning sites by directional cloning meth¬od. Clon Transgen. 7: 1–5.
25. Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks D, Ribeiro J (2001) Toward a de¬fined anti-Leishmania vaccine targeting vector antigens: Characterization of a pro¬tective salivary protein. J Exp Med. 194(3): 331–342.
26. Edwards CP, Aruffo A (1993) Current applications of COS cell based transient expression systems. Curr Opin Biotech¬nol. 4(5): 558–563.
27. Sambrook J (2001) Molecular cloning : a laboratory manual [Internet]. Third edi¬tion. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, Avail¬able at: https://search.library.wisc.edu/catalog/999897924602121
28. Seyed N, Taheri T, Rafati S (2016) Post-genomics and vaccine improvement for Leishmania. Front Microbiol. 7: 467–480.
29. Belkaid Y, Kamhawi S, Modi G, Valen¬zuela J, Noben-Trauth N, Rowton E, Ri¬beiro J, Sacks D (1998) Development of a natural model of cutaneous leishman¬iasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 188(10): 1941–1953.
30. Rostami B, Irani S, Bolhassani A, Cohan RA (2019) Gene and protein delivery using four cell penetrating peptides for HIV‐1 vaccine development. IUBMB Life. 71(10): 1619–1633.
31. Nasr-Esfahani M, Doosti A, Sazegar H (2020) Evaluation of the immune re¬sponse against Helicobacter pylori in in¬fused BALB/c mice by pcDNA3. 1 (+)-ureA. Folia Medica. 62(1): 37–45.
32. Rakhmawati A, Rukmana A, Karuniawa¬ti A (2018) Construction of pcDNA3. 1 Vector Encoding rpfD Gene of My¬co¬bacterium tuberculosis. Makara J Sci. 22(3): 149–154.
33. Evans TG, Schrager L, Thole J (2016) Sta¬tus of vaccine research and development of vaccines for tuberculosis. Vaccine. 34(26): 2911–2914.
34. Hosseini-Vasoukolaei N, Mahmoudi AR, Khamesipour A, Yaghoobi-Ershadi MR, Kamhawi S, Valenzuela JG, Arandian MH, Mirhendi H, Emami S, Saeidi Z, Idali F, Jafari R, Jeddi-Tehrani M, Akha¬van AA (2016) Seasonal and physi¬o¬logical variations of Phlebotomus papa-tasi salivary gland antigens in central Iran. J Arthropod-Borne Dis. 10(1): 39–49.
35. Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Ab¬deladhim M, Teixeira C, Meneses C, Kleeman LT, Guimarães-Costa AB (2015) A sand fly salivary protein vaccine shows efficacy against vector-transmitted cuta¬neous leishmaniasis in nonhuman pri¬mates. Sci Transl Med. 7(290): 1–13.
36. Gholami E, Oliveira F, Taheri T, Seyed N, Gharibzadeh S, Gholami N, Mizbani A, Zali F, Habibzadeh S, Bakhadj D, Menes¬es C, Kamyab-Hesari K, Sadeghi-pour A, Taslimi Y, khadir F, Kamhawi Sh, Mazlomi MA, Valenzuela J, Rafati S (2019) DNA plasmid coding for Phleboto¬mus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Negl Trop Dis. 13(1): e0007067.
37. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly maxadilan exacerbates infection with Leish¬mania major and vaccinating against it protects against L. major infection. J Immunol. 167(9): 5226–5230.
38. de Moura TR, Oliveira F, Carneiro MW, Miranda JC, Clarêncio J, Barral-Netto M, Brodskyn C, Barral A, Ribeiro JM, Valen¬zuela JG, de Oliveira CI (2013) Func¬tional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: iden¬tification of a protective salivary pro-tein against Leishmania braziliensis in¬fection. PLoS Negl Trop Dis. 7(5): e2242.
39. Asojo OA, Kelleher A, Liu Z, Pollet J, Hudspeth EM, Rezende WC, Groen MJ, Seid CA, Abdeladhim M, Townsend S, de Castro W, Mendes-Sousa A, Barthol¬omeu DC, Fujiwara RT, Bottazzi ME, Hotez PJ, Zhan B, Oliveira F, Kamhawi S, Valenzuela JG (2017) Structure of SALO, a leishmaniasis vaccine candi¬date from the sand fly Lutzomyia long¬i-palpis. PLoS Negl Trop Dis. 11(3): e0005374.
40. Tavares NM, Silva RA, Costa DJ, Pi¬tombo MA, Fukutani KF, Miranda JC, Valenzuela JG, Barral A, De Oliveira CI, Barral-Netto M, Brodskyn C (2011) Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leish¬mania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis. 5(5): e1169.
41. Abdeladhim M, Jochim RC, Ben Ahmed M, Zhioua E, Chelbi I, Cherni S, Louzir H, Ribeiro JM, Valenzuela JG (2012) Updating the salivary gland transcrip¬tome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immu¬nogenic proteins for humans. PLoS One. 7(11): e47347.
42. Hanahan D (1983) Studies on transfor¬mation of Escherichia coli with plas¬mids. J Mol Biol. 66(4): 557–5580.
43. Demain AL, Vaishnav P (2009) Produc¬tion of recombinant proteins by mi¬crobes and higher organisms. Biotechnol Adv. 27(3): 297–306.
44. Baghani A, Youssefi M, Safdari H, Tei¬mourpour R, Meshkat Z (2015) Design¬ing and construction Pcdna3.1 vector encoding Cfp10 gene of Mycobacterium tuberculosis. Jundishapur J Microbiol. 8 (10): 1–5.
45. Khan KH (2013) Gene expression in mam¬malian cells and its applications. Adv Pharm Bull. 3(2): 257–63.
46. Aruffo A (1998) Transient expression of proteins using COS cells. Curr Protoc Neurosci. 2(1): 4–7.
47. Kim TK, Eberwine JH (2010) Mamma¬lian cell transfection: the present and the future. Anal Bioanal Chem. 397: 3173–3178.
48. Dhara VG, Naik HM, Majewska NI, Be¬tenbaugh MJ (2018) Recombinant anti¬body production in CHO and NS0 cells: differences and similarities. BioDrugs. 32(6): 571–584.
49. Godbey WT, Wu KK, Mikos AG (1999) Poly (ethylenimine) and its role in gene delivery. J Control Release. 60(2–3): 149–160.
50. Boussif O, Lezoualc’h F, Zanta MAnto¬niet, Mergny MD, Scherman D, De¬meneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide trans¬fer into cells in culture and in vivo: pol¬yethylenimine. Proc Natl Acad Sci. 92 (16): 7297–7301.
2. Beach R, Kjilu G, Leeuwenberg J (1985) Modification of sand fly biting behavior by Leishmania leads to increased para¬site transmission. J Trop Med Hyg. 34 (2): 278–282.
3. WHO (2023) Leishmaniasis [Internet]. Available at: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
4. Pearson RD, de Queiroz Sousa A (1996) Clinical spectrum of leishmaniasis. Clin Infect Dis. 22(1): 1–11.
5. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 7(5): e35671.
6. Razavi MR, Shirzadi MR, Mohebali M, Yaghoobi-Ershadi MR, Vatandoost H, Shirzadi M, Gouya MM, Gharachorloo F, Arshi Sh, Amiri B (2021) Human cu¬taneous leishmaniosis in Iran, up to date-2019. J Arthropod-Borne Dis. 15(2): 143.
7. Charlab R, Valenzuela JG, Rowton ED, Ri¬beiro JMC (1999) Toward an under¬standing of the biochemical and phar¬macological complexity of the saliva of a hematophagous sand fly Lutzomyia long¬ipalpis. Proc Natl Acad Sci. 96(26): 15155–15160.
8. Ribeiro JM, Rossignol PA, Spielman A (1986) Blood-finding strategy of a ca¬pillary-feeding sandfly, Lutzomyia long¬i¬palpis. Comp Biochem Physiol A Comp Physiol. 83(4): 683–686.
9. Thiakaki M, Rohousova I, Volfova V, Volf P, Chang KP, Soteriadou K (2005) Sand fly specificity of saliva-mediated protective immunity in Leishmania ama¬zonensis-BALB/c mouse model. Mi¬crobes Infect. 7(4): 760–766.
10. Wheat WH, Arthun EN, Spencer JS, Re¬gan DP, Titus RG, Dow SW (2017) Im¬munization against full-length protein and peptides from the Lutzomyia long¬ipalpis sand fly salivary component maxadi¬lan protects against Leishmania major infection in a murine model. Vac-cine. 35(48): 6611–6619.
11. Kamhawi S, Belkaid Y, Modi G, Row¬ton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 290(5495): 1351–1354.
12. Cunha JM, Abbehusen M, Suarez M, Valen¬zuela J, Teixeira CR, Brodskyn CI (2018) Immunization with LJM11 sali¬vary protein protects against infection with Leishmania braziliensis in the pres¬ence of Lutzomyia longipalpis saliva. Acta Trop. 177: 164–170.
13. Gomes R, Oliveira F (2012) The im¬mune response to sand fly salivary pro¬teins and its influence on Leishmania immun¬ity. Front Immunol. 3: 110–118.
14. Seyed N, Rafati S (2021) Th1 concomi¬tant immune response mediated by IFN-γ protects against sand fly delivered Leish¬mania infection: implications for vac¬cine design. Cytokine. 147: 155247.
15. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Her¬nández R, Pountain A, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: A 21st-century challenge. PLoS Negl Trop Dis. 11(12): e0006052.
16. Khamesipour A, Rafati S, Davoudi N, Ma¬boudi F, Modabber F (2006) Leish¬man¬iasis vaccine candidates for develop¬ment: a global overview. Indian J Med Res. 123(3): 423–438.
17. Moreno S, Timon M (2004) DNA vac¬cination: an immunological perspective. Inmunologia. 23(1): 41–55.
18. Morris S, Kelley C, Howard A, Li Z, Collins F (2000) The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine. 18(20): 2155–2163.
19. Lee J, Kumar SA, Jhan YY, Bishop CJ (2018) Engineering DNA vaccines against infectious diseases. Acta Biomater. 80: 31–47.
20. Prather KJ, Sagar S, Murphy J, Char¬train M (2003) Industrial scale produc¬tion of plasmid DNA for vaccine and gene therapy: plasmid design, produc¬tion, and purification. Enzyme Microb Technol. 33(7): 865–883.
21. Rosini E, Pollegioni L (2023) Opti¬mized rapid production of recombinant secret¬ed proteins in CHO cells grown in sus¬pension: The case of RBD. Biotechnol Appl Biochem. 70(2): 909–918.
22. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eu¬karyotic ribosomes. Cell. 44(2): 283–292.
23. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon en¬hance translation in mammalian cells. J Mol Biol. 196(4): 947–950.
24. Naaz S, Kazim SN (2018) Designing and reconstruction of pcDNA3.1 mammali¬an expression vector with its multiple cloning sites by directional cloning meth¬od. Clon Transgen. 7: 1–5.
25. Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks D, Ribeiro J (2001) Toward a de¬fined anti-Leishmania vaccine targeting vector antigens: Characterization of a pro¬tective salivary protein. J Exp Med. 194(3): 331–342.
26. Edwards CP, Aruffo A (1993) Current applications of COS cell based transient expression systems. Curr Opin Biotech¬nol. 4(5): 558–563.
27. Sambrook J (2001) Molecular cloning : a laboratory manual [Internet]. Third edi¬tion. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, Avail¬able at: https://search.library.wisc.edu/catalog/999897924602121
28. Seyed N, Taheri T, Rafati S (2016) Post-genomics and vaccine improvement for Leishmania. Front Microbiol. 7: 467–480.
29. Belkaid Y, Kamhawi S, Modi G, Valen¬zuela J, Noben-Trauth N, Rowton E, Ri¬beiro J, Sacks D (1998) Development of a natural model of cutaneous leishman¬iasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 188(10): 1941–1953.
30. Rostami B, Irani S, Bolhassani A, Cohan RA (2019) Gene and protein delivery using four cell penetrating peptides for HIV‐1 vaccine development. IUBMB Life. 71(10): 1619–1633.
31. Nasr-Esfahani M, Doosti A, Sazegar H (2020) Evaluation of the immune re¬sponse against Helicobacter pylori in in¬fused BALB/c mice by pcDNA3. 1 (+)-ureA. Folia Medica. 62(1): 37–45.
32. Rakhmawati A, Rukmana A, Karuniawa¬ti A (2018) Construction of pcDNA3. 1 Vector Encoding rpfD Gene of My¬co¬bacterium tuberculosis. Makara J Sci. 22(3): 149–154.
33. Evans TG, Schrager L, Thole J (2016) Sta¬tus of vaccine research and development of vaccines for tuberculosis. Vaccine. 34(26): 2911–2914.
34. Hosseini-Vasoukolaei N, Mahmoudi AR, Khamesipour A, Yaghoobi-Ershadi MR, Kamhawi S, Valenzuela JG, Arandian MH, Mirhendi H, Emami S, Saeidi Z, Idali F, Jafari R, Jeddi-Tehrani M, Akha¬van AA (2016) Seasonal and physi¬o¬logical variations of Phlebotomus papa-tasi salivary gland antigens in central Iran. J Arthropod-Borne Dis. 10(1): 39–49.
35. Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Ab¬deladhim M, Teixeira C, Meneses C, Kleeman LT, Guimarães-Costa AB (2015) A sand fly salivary protein vaccine shows efficacy against vector-transmitted cuta¬neous leishmaniasis in nonhuman pri¬mates. Sci Transl Med. 7(290): 1–13.
36. Gholami E, Oliveira F, Taheri T, Seyed N, Gharibzadeh S, Gholami N, Mizbani A, Zali F, Habibzadeh S, Bakhadj D, Menes¬es C, Kamyab-Hesari K, Sadeghi-pour A, Taslimi Y, khadir F, Kamhawi Sh, Mazlomi MA, Valenzuela J, Rafati S (2019) DNA plasmid coding for Phleboto¬mus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Negl Trop Dis. 13(1): e0007067.
37. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly maxadilan exacerbates infection with Leish¬mania major and vaccinating against it protects against L. major infection. J Immunol. 167(9): 5226–5230.
38. de Moura TR, Oliveira F, Carneiro MW, Miranda JC, Clarêncio J, Barral-Netto M, Brodskyn C, Barral A, Ribeiro JM, Valen¬zuela JG, de Oliveira CI (2013) Func¬tional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: iden¬tification of a protective salivary pro-tein against Leishmania braziliensis in¬fection. PLoS Negl Trop Dis. 7(5): e2242.
39. Asojo OA, Kelleher A, Liu Z, Pollet J, Hudspeth EM, Rezende WC, Groen MJ, Seid CA, Abdeladhim M, Townsend S, de Castro W, Mendes-Sousa A, Barthol¬omeu DC, Fujiwara RT, Bottazzi ME, Hotez PJ, Zhan B, Oliveira F, Kamhawi S, Valenzuela JG (2017) Structure of SALO, a leishmaniasis vaccine candi¬date from the sand fly Lutzomyia long¬i-palpis. PLoS Negl Trop Dis. 11(3): e0005374.
40. Tavares NM, Silva RA, Costa DJ, Pi¬tombo MA, Fukutani KF, Miranda JC, Valenzuela JG, Barral A, De Oliveira CI, Barral-Netto M, Brodskyn C (2011) Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leish¬mania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis. 5(5): e1169.
41. Abdeladhim M, Jochim RC, Ben Ahmed M, Zhioua E, Chelbi I, Cherni S, Louzir H, Ribeiro JM, Valenzuela JG (2012) Updating the salivary gland transcrip¬tome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immu¬nogenic proteins for humans. PLoS One. 7(11): e47347.
42. Hanahan D (1983) Studies on transfor¬mation of Escherichia coli with plas¬mids. J Mol Biol. 66(4): 557–5580.
43. Demain AL, Vaishnav P (2009) Produc¬tion of recombinant proteins by mi¬crobes and higher organisms. Biotechnol Adv. 27(3): 297–306.
44. Baghani A, Youssefi M, Safdari H, Tei¬mourpour R, Meshkat Z (2015) Design¬ing and construction Pcdna3.1 vector encoding Cfp10 gene of Mycobacterium tuberculosis. Jundishapur J Microbiol. 8 (10): 1–5.
45. Khan KH (2013) Gene expression in mam¬malian cells and its applications. Adv Pharm Bull. 3(2): 257–63.
46. Aruffo A (1998) Transient expression of proteins using COS cells. Curr Protoc Neurosci. 2(1): 4–7.
47. Kim TK, Eberwine JH (2010) Mamma¬lian cell transfection: the present and the future. Anal Bioanal Chem. 397: 3173–3178.
48. Dhara VG, Naik HM, Majewska NI, Be¬tenbaugh MJ (2018) Recombinant anti¬body production in CHO and NS0 cells: differences and similarities. BioDrugs. 32(6): 571–584.
49. Godbey WT, Wu KK, Mikos AG (1999) Poly (ethylenimine) and its role in gene delivery. J Control Release. 60(2–3): 149–160.
50. Boussif O, Lezoualc’h F, Zanta MAnto¬niet, Mergny MD, Scherman D, De¬meneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide trans¬fer into cells in culture and in vivo: pol¬yethylenimine. Proc Natl Acad Sci. 92 (16): 7297–7301.
Files | ||
Issue | Vol 18 No 4 (2024) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/jad.v18i4.19340 | |
Keywords | ||
Leishmania major; Phlebotomus papatasi; PpSP15; pcDNA 3.1; PEI |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Fatemi M, Ghaffarifar F, Gholami E, Mohebali M, Khamesipour A, Oshaghi MA, Rassi Y, Zahraei-Ramazani A, Akavan AA. Expression of Phlebotomus papatasi Salivary Protein 15 (PpSP15) in COS-7 Cells. J Arthropod Borne Dis. 2025;18(4):346–355.