Original Article

Expression of Phlebotomus papatasi Salivary Protein 15 (PpSP15) in COS-7 Cells

Abstract

Background: Cutaneous leishmaniasis (CL) is a neglected tropical infection and the most prevalent vector-borne dis­ease in Iran. There is no approved human vaccine and current treatments are restricted; some drugs are expensive and have notable side effects. Therefore, the need for the development of a safe and effective vaccine that can be produced at a low cost remains urgent. It has been shown that vaccinating animals with salivary gland homogenate or saliva com­ponents of sand flies protected against Leishmania infection. In this study, we aimed to prepare a mammalian expres­sion vector encoding Phlebotomus papatasi salivary protein 15 (PpSP15) intended to be used as a DNA vaccine in our forthcoming studies. Methods: In this study, we designed and constructed pcDNA3. 1, a constitutive mammalian expression vector, to en­code the immunogenic protein PpSP15. The presence of the target gene was confirmed by enzymatic digestion and se­quencing. The mammalian COS-7 cells were transfected with the pcDNA3.1 vector and the expression of PpSP15 pro­tein was then examined in the cell line using Western Blotting analysis. Results: Restriction enzyme digestion and sequencing revealed the correctly constructed pcDNA3.1-PpSP15. After the transfection of the COS-7 cell line with pcDNA3.1-PpSP15 using Linear Polyethylenimine, the PpSP15 protein expres­sion was confirmed by western blot analysis using anti-His antibody. Conclusion: A high expression level of PpSP15 protein in COS-7 cells was achieved after the transfection of COS-7 cells, using cationic Linear Polyethylenimine. In subsequent research, this recombinant plasmid is supposed to be uti­lized as a candidate DNA vaccine to find its immunity induction in susceptible animal models.
1. Gradoni L (2018) A Brief Introduction to Leishmaniasis Epidemiology. In: Bruschi F, Gradoni L (Eds): The Leishmaniases: Old Neglected Tropical Diseases. Spring¬er International Publishing, pp. 1–13.
2. Beach R, Kjilu G, Leeuwenberg J (1985) Modification of sand fly biting behavior by Leishmania leads to increased para¬site transmission. J Trop Med Hyg. 34 (2): 278–282.
3. WHO (2023) Leishmaniasis [Internet]. Available at: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
4. Pearson RD, de Queiroz Sousa A (1996) Clinical spectrum of leishmaniasis. Clin Infect Dis. 22(1): 1–11.
5. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 7(5): e35671.
6. Razavi MR, Shirzadi MR, Mohebali M, Yaghoobi-Ershadi MR, Vatandoost H, Shirzadi M, Gouya MM, Gharachorloo F, Arshi Sh, Amiri B (2021) Human cu¬taneous leishmaniosis in Iran, up to date-2019. J Arthropod-Borne Dis. 15(2): 143.
7. Charlab R, Valenzuela JG, Rowton ED, Ri¬beiro JMC (1999) Toward an under¬standing of the biochemical and phar¬macological complexity of the saliva of a hematophagous sand fly Lutzomyia long¬ipalpis. Proc Natl Acad Sci. 96(26): 15155–15160.
8. Ribeiro JM, Rossignol PA, Spielman A (1986) Blood-finding strategy of a ca¬pillary-feeding sandfly, Lutzomyia long¬i¬palpis. Comp Biochem Physiol A Comp Physiol. 83(4): 683–686.
9. Thiakaki M, Rohousova I, Volfova V, Volf P, Chang KP, Soteriadou K (2005) Sand fly specificity of saliva-mediated protective immunity in Leishmania ama¬zonensis-BALB/c mouse model. Mi¬crobes Infect. 7(4): 760–766.
10. Wheat WH, Arthun EN, Spencer JS, Re¬gan DP, Titus RG, Dow SW (2017) Im¬munization against full-length protein and peptides from the Lutzomyia long¬ipalpis sand fly salivary component maxadi¬lan protects against Leishmania major infection in a murine model. Vac-cine. 35(48): 6611–6619.
11. Kamhawi S, Belkaid Y, Modi G, Row¬ton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 290(5495): 1351–1354.
12. Cunha JM, Abbehusen M, Suarez M, Valen¬zuela J, Teixeira CR, Brodskyn CI (2018) Immunization with LJM11 sali¬vary protein protects against infection with Leishmania braziliensis in the pres¬ence of Lutzomyia longipalpis saliva. Acta Trop. 177: 164–170.
13. Gomes R, Oliveira F (2012) The im¬mune response to sand fly salivary pro¬teins and its influence on Leishmania immun¬ity. Front Immunol. 3: 110–118.
14. Seyed N, Rafati S (2021) Th1 concomi¬tant immune response mediated by IFN-γ protects against sand fly delivered Leish¬mania infection: implications for vac¬cine design. Cytokine. 147: 155247.
15. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Her¬nández R, Pountain A, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: A 21st-century challenge. PLoS Negl Trop Dis. 11(12): e0006052.
16. Khamesipour A, Rafati S, Davoudi N, Ma¬boudi F, Modabber F (2006) Leish¬man¬iasis vaccine candidates for develop¬ment: a global overview. Indian J Med Res. 123(3): 423–438.
17. Moreno S, Timon M (2004) DNA vac¬cination: an immunological perspective. Inmunologia. 23(1): 41–55.
18. Morris S, Kelley C, Howard A, Li Z, Collins F (2000) The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine. 18(20): 2155–2163.
19. Lee J, Kumar SA, Jhan YY, Bishop CJ (2018) Engineering DNA vaccines against infectious diseases. Acta Biomater. 80: 31–47.
20. Prather KJ, Sagar S, Murphy J, Char¬train M (2003) Industrial scale produc¬tion of plasmid DNA for vaccine and gene therapy: plasmid design, produc¬tion, and purification. Enzyme Microb Technol. 33(7): 865–883.
21. Rosini E, Pollegioni L (2023) Opti¬mized rapid production of recombinant secret¬ed proteins in CHO cells grown in sus¬pension: The case of RBD. Biotechnol Appl Biochem. 70(2): 909–918.
22. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eu¬karyotic ribosomes. Cell. 44(2): 283–292.
23. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon en¬hance translation in mammalian cells. J Mol Biol. 196(4): 947–950.
24. Naaz S, Kazim SN (2018) Designing and reconstruction of pcDNA3.1 mammali¬an expression vector with its multiple cloning sites by directional cloning meth¬od. Clon Transgen. 7: 1–5.
25. Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks D, Ribeiro J (2001) Toward a de¬fined anti-Leishmania vaccine targeting vector antigens: Characterization of a pro¬tective salivary protein. J Exp Med. 194(3): 331–342.
26. Edwards CP, Aruffo A (1993) Current applications of COS cell based transient expression systems. Curr Opin Biotech¬nol. 4(5): 558–563.
27. Sambrook J (2001) Molecular cloning : a laboratory manual [Internet]. Third edi¬tion. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, Avail¬able at: https://search.library.wisc.edu/catalog/999897924602121
28. Seyed N, Taheri T, Rafati S (2016) Post-genomics and vaccine improvement for Leishmania. Front Microbiol. 7: 467–480.
29. Belkaid Y, Kamhawi S, Modi G, Valen¬zuela J, Noben-Trauth N, Rowton E, Ri¬beiro J, Sacks D (1998) Development of a natural model of cutaneous leishman¬iasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 188(10): 1941–1953.
30. Rostami B, Irani S, Bolhassani A, Cohan RA (2019) Gene and protein delivery using four cell penetrating peptides for HIV‐1 vaccine development. IUBMB Life. 71(10): 1619–1633.
31. Nasr-Esfahani M, Doosti A, Sazegar H (2020) Evaluation of the immune re¬sponse against Helicobacter pylori in in¬fused BALB/c mice by pcDNA3. 1 (+)-ureA. Folia Medica. 62(1): 37–45.
32. Rakhmawati A, Rukmana A, Karuniawa¬ti A (2018) Construction of pcDNA3. 1 Vector Encoding rpfD Gene of My¬co¬bacterium tuberculosis. Makara J Sci. 22(3): 149–154.
33. Evans TG, Schrager L, Thole J (2016) Sta¬tus of vaccine research and development of vaccines for tuberculosis. Vaccine. 34(26): 2911–2914.
34. Hosseini-Vasoukolaei N, Mahmoudi AR, Khamesipour A, Yaghoobi-Ershadi MR, Kamhawi S, Valenzuela JG, Arandian MH, Mirhendi H, Emami S, Saeidi Z, Idali F, Jafari R, Jeddi-Tehrani M, Akha¬van AA (2016) Seasonal and physi¬o¬logical variations of Phlebotomus papa-tasi salivary gland antigens in central Iran. J Arthropod-Borne Dis. 10(1): 39–49.
35. Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Ab¬deladhim M, Teixeira C, Meneses C, Kleeman LT, Guimarães-Costa AB (2015) A sand fly salivary protein vaccine shows efficacy against vector-transmitted cuta¬neous leishmaniasis in nonhuman pri¬mates. Sci Transl Med. 7(290): 1–13.
36. Gholami E, Oliveira F, Taheri T, Seyed N, Gharibzadeh S, Gholami N, Mizbani A, Zali F, Habibzadeh S, Bakhadj D, Menes¬es C, Kamyab-Hesari K, Sadeghi-pour A, Taslimi Y, khadir F, Kamhawi Sh, Mazlomi MA, Valenzuela J, Rafati S (2019) DNA plasmid coding for Phleboto¬mus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Negl Trop Dis. 13(1): e0007067.
37. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly maxadilan exacerbates infection with Leish¬mania major and vaccinating against it protects against L. major infection. J Immunol. 167(9): 5226–5230.
38. de Moura TR, Oliveira F, Carneiro MW, Miranda JC, Clarêncio J, Barral-Netto M, Brodskyn C, Barral A, Ribeiro JM, Valen¬zuela JG, de Oliveira CI (2013) Func¬tional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: iden¬tification of a protective salivary pro-tein against Leishmania braziliensis in¬fection. PLoS Negl Trop Dis. 7(5): e2242.
39. Asojo OA, Kelleher A, Liu Z, Pollet J, Hudspeth EM, Rezende WC, Groen MJ, Seid CA, Abdeladhim M, Townsend S, de Castro W, Mendes-Sousa A, Barthol¬omeu DC, Fujiwara RT, Bottazzi ME, Hotez PJ, Zhan B, Oliveira F, Kamhawi S, Valenzuela JG (2017) Structure of SALO, a leishmaniasis vaccine candi¬date from the sand fly Lutzomyia long¬i-palpis. PLoS Negl Trop Dis. 11(3): e0005374.
40. Tavares NM, Silva RA, Costa DJ, Pi¬tombo MA, Fukutani KF, Miranda JC, Valenzuela JG, Barral A, De Oliveira CI, Barral-Netto M, Brodskyn C (2011) Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leish¬mania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis. 5(5): e1169.
41. Abdeladhim M, Jochim RC, Ben Ahmed M, Zhioua E, Chelbi I, Cherni S, Louzir H, Ribeiro JM, Valenzuela JG (2012) Updating the salivary gland transcrip¬tome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immu¬nogenic proteins for humans. PLoS One. 7(11): e47347.
42. Hanahan D (1983) Studies on transfor¬mation of Escherichia coli with plas¬mids. J Mol Biol. 66(4): 557–5580.
43. Demain AL, Vaishnav P (2009) Produc¬tion of recombinant proteins by mi¬crobes and higher organisms. Biotechnol Adv. 27(3): 297–306.
44. Baghani A, Youssefi M, Safdari H, Tei¬mourpour R, Meshkat Z (2015) Design¬ing and construction Pcdna3.1 vector encoding Cfp10 gene of Mycobacterium tuberculosis. Jundishapur J Microbiol. 8 (10): 1–5.
45. Khan KH (2013) Gene expression in mam¬malian cells and its applications. Adv Pharm Bull. 3(2): 257–63.
46. Aruffo A (1998) Transient expression of proteins using COS cells. Curr Protoc Neurosci. 2(1): 4–7.
47. Kim TK, Eberwine JH (2010) Mamma¬lian cell transfection: the present and the future. Anal Bioanal Chem. 397: 3173–3178.
48. Dhara VG, Naik HM, Majewska NI, Be¬tenbaugh MJ (2018) Recombinant anti¬body production in CHO and NS0 cells: differences and similarities. BioDrugs. 32(6): 571–584.
49. Godbey WT, Wu KK, Mikos AG (1999) Poly (ethylenimine) and its role in gene delivery. J Control Release. 60(2–3): 149–160.
50. Boussif O, Lezoualc’h F, Zanta MAnto¬niet, Mergny MD, Scherman D, De¬meneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide trans¬fer into cells in culture and in vivo: pol¬yethylenimine. Proc Natl Acad Sci. 92 (16): 7297–7301.
Files
IssueVol 18 No 4 (2024) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v18i4.19340
Keywords
Leishmania major; Phlebotomus papatasi; PpSP15; pcDNA 3.1; PEI

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Fatemi M, Ghaffarifar F, Gholami E, Mohebali M, Khamesipour A, Oshaghi MA, Rassi Y, Zahraei-Ramazani A, Akavan AA. Expression of Phlebotomus papatasi Salivary Protein 15 (PpSP15) in COS-7 Cells. J Arthropod Borne Dis. 2025;18(4):346–355.