Original Article

Organophosphate and Pyrethroid Resistance Status of Invasive Aedes aegypti (Diptera:Culicidae) from Iran

Abstract

Background: The growing concerns regarding the recent invasion of Aedes aegypti in Iran and the potential outbreak of dengue fever, chikungunya and Zika viruses in the country highlight the importance of assessing the susceptibility of this vector to different insecticides.

Methods: The study assessed the resistance status of Ae. aegypti resistance to insecticides such as deltamethrin, perme­thrin, malathion, and temephos in Bandar Abbas City, Hormozgan Province, Iran. The research followed WHO standard testing procedures for adult mosquitoes. Adult susceptibility tests were conducted using 1X the discriminating concen­trations to determine the frequency and status of insecticide resistance. Additionally, 5X and 10X the discriminating concentration were used to evaluate the intensity of resistance. Larval susceptibility to temephos was tested using con­centrations of 156.25, 31.25, 6.25, 1.25, and 0.25 mg/l of temephos.

Results: Adults were resistant to all three tested insecticides at WHO-recommended diagnostic concentrations (DCs). In terms of resistance intensity, Ae. aegypti exhibited low-intensity resistance to malathion and deltamethrin, while re­sistance to permethrin was high-intensity. Dose-response analysis regarding the susceptibility of larvae to temephos showed LC50, LC90, and LC99 values of 0.013, 0.065, and 0.238 mg/l, respectively. These values indicate resistance when compared to the WHO diagnostic dose for temephos resistance of 0.012 mg/l.

Conclusion: The results of this study highlight the need for an urgent strategy to manage resistance to insecticides and strengthen the integrated management program of Ae. aegypti. This fact emphasizes the importance of reducing larval sources and promoting research on alternative methods and products.

1. Ponlawat A, Harrington LC (2005) Blood feeding patterns of Aedes aegypti and Ae¬des albopictus in Thailand. J Med Ento¬mol. 42(5): 844–849.
2. World Health Organization (2009) Epidem-ic, Pandemic Alert. Dengue: guidelines for diagnosis, treatment, prevention and control. Available at: https://www.who.int/publications/i/item/9789241547871 (access 22 October 2009).
3. Kweka EJ, Baraka V, Mathias L, Mwang’onde B, Baraka G, Lyaruu L, Mahande AM (2018) Ecology of Aedes mosquitoes, the Major Vectors of Arboviruses in Human Population. In: Falcón-Lezama JA, Betancourt-Cravioto M, Tapia-Conyer R (Eds): Dengue Fever-a Resilient Threat Face Innovaion, BoD–Books on De¬mand, pp. 39–56.
4. Wilkerson RC, Linton YM, Strickman D (2021) Mosquitoes of the World. Balti-more, MD, USA: Johns Hopkins Uni-versity Press, Baltimore.
5. Schaffner F, Mathis A (2014) Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet Infect Dis. 14(12): 1271–1280.
6. World Health Organization (2011) Com-pre¬hensive Guideline for Prevention and Con¬trol of Dengue and Dengue Haemorrhag¬ic Fever. Revised and expanded edition. WHO Regional Office for South-East Asia. Available at: https://iris.who.int/handle/10665/204894.
7. Esu E, Lenhart A, Smith L, Horstick O (2010) Effectiveness of peridomestic space spray¬ing with insecticide on dengue transmis¬sion; systematic review. Trop Med Int Health. 15(5): 619–631.
8. George L, Lenhart A, Toledo J, Lazaro A, Han WW, Velayudhan R, Ranzinger SR, Horstic O (2015) Community-effective¬ness of temephos for dengue vector con¬trol: a systematic literature review. PLoS Negl Trop Dis. 9(9): e0004006.
9. Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A (2010) Dengue vector-con¬trol services: how do they work? A system¬at¬ic literature review and country case stud¬ies. Trans R Soc Trop Med Hyg. 104 (6): 379–386.
10. World Health Organization (2014) Man-agement of insecticide resistance in vec-tors of public health importance. Report of the ninth meeting of the Global Col-laboration for Development of Pesti-cides for Public Health (GCDPP). Available at: https://apps.who.int/iris/handle/10665/145673 (access 10 September 2014).
11. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pin¬to R, Corbel V, David JP, Weetman D (2017) Contemporary status of insecti¬cide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 11(7): e0005625.
12. Asgarian TS, Vatandoost H, Hanafi-Bojd AA, Nikpoor F (2023) Worldwide status of insecticide resistance of Aedes ae¬gypti and Ae. albopictus, vectors of arbovirus-es of Chikungunya, Dengue, Zika and Yel¬low Fever. J Arthropod Borne Dis. 17 (1): 1–27.
13. World Health Organization (2023) Report on insecticide resistance in Aedes mos-quitoes (Aedes aegypti, Ae. albopictus, Ae. vittatus) in WHO South-East Asia Re¬gion countries. Available at: https://www.who.int/publications/i/item/sea-cd-334 (acsses 4 April 2023).
14. Ghouth ASB (2018) Dengue in the WHO Eastern Mediterranean Region: challeng-es to understand its epidemiology. Heal Prim Care. 2(2): 1–2.
15. Rasheed S, Butlin R, Boots M (2013) A re¬view of dengue as an emerging dis¬ease in Pakistan. Public Health. 127(1): 11–17.
16. Rahman RU, Souza B, Uddin I, Carrara L, Brito LP, Costa MM, Mahmood MA, Khan S, Lima JBP, Martins AJ (2021) Insecticide resistance and underlying tar¬gets-site and metabolic mechanisms in Ae¬des aegypti and Aedes albopictus from Lahore, Pakistan. Sci Rep. 11(1): 4555.
17. Khan HAA, Akram W (2019) Resistance status to deltamethrin, permethrin, and temephos along with preliminary re-sistance mechanism in Aedes aegypti (Dip¬tera: Culicidae) from Punjab, Pakistan. J Med Entomol. 56(5): 1304–1311.
18. Sahak MN (2020) Dengue fever as an emerg¬ing disease in Afghanistan: Epidemiolo¬gy of the first reported cases. Int J Infect Dis. 99: 23–27.
19. Dorzaban H, Soltani A, Alipour H, Hata-mi J, Jaberhashemi SA, Shahriari-Namadi M, Paksa A, Safari R, Talbalaghi A, Azizi K (2022) Mosquito surveillance and the first record of morphological and molec¬ular-based identification of invasive spe¬cies Aedes (Stegomyia) aegypti (Diptera: Culicidae), southern Iran. Exp Parasitol. 236: 108235.
20. ICDC (2024) Report of CDC on dengue fever. Available at: http://icdc.behdasht.gov.ir/XsR (acsses 17 July 2024).
21. Azari-Hamidian S, Norouzi B, Maleki H, Rezvani SM, Pourgholami M, Oshaghi MA (2024) First record of a medically important vector, the Asian tiger mosqui¬to Aedes albopictus (Skuse, 1895) (Dip¬tera: Culicidae), using morphological and molecular data in northern Iran. J Insect Biodivers Syst.10(4): 953–963.
22. World Health Organization (2020) The WHO recommended classification of pes¬ticides by hazard and guidelines to classification 2019. Available at: https://www.who.int/publications/i/item/9789240005662 (acsses 1 May 2020).
23. Liu N (2015) Insecticide resistance in mos¬quitoes: impact, mechanisms, and re-search directions. Ann Rev Entomol. 60: 537–559.
24. Diaz JH (2016) Chemical and plant-based insect repellents: efficacy, safety, and tox¬icity. Wilderness Environ Med. 27(1): 153–163.
25. Li W, Morgan MK, Graham SE, Starr JM (2016) Measurement of pyrethroids and their environmental degradation prod-ucts in fresh fruits and vegetables using a mod¬ification of the quick easy cheap effec¬tive rugged safe (QuEChERS) method. Talanta. 151: 42–50.
26. Burns CJ, Pastoor TP (2018) Pyrethroid ep¬idemiology: a quality-based review. Crit Rev Toxicol. 48(4): 297–311.
27. Denholm I, Devine GJ (2013) Insecticide Resistance. In: Levin SA (Ed): Ency¬clo-pedia of Biodiversity, second edition, Vol. 4. Waltham, MA: Academic Press, pp. 298–307.
28. Lima EP, Paiva MHS, de Araújo AP, da Silva ÉVG, da Silva UM, de Oliveira LN, Santana AEJ, Barbosa CN, de Paiva Neto CC, OF Goulart M, Wilding CS, Ayres CFJ, de Melo Santos MAV (2011) Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit Vectors. 4: 5.
29. Macoris MdLdG, Andrighetti MTM, Otrera VCG, Carvalho LRd, Caldas Júnior AL, Brogdon WG (2007) Association of in-secticide use and alteration on Aedes aegypti susceptibility status. Mem Inst Os-waldo Cruz. 102: 895–900.
30. Moore P, Yedjou C, Tchounwou P (2010) Malathion‐induced oxidative stress, cytotoxicity, and genotoxicity in human liver carcinoma (HepG2) cells. Environ Toxicol. 25(3): 221–226.
31. World Health Organization (2009) Temeph¬os in Drinking-Water: Use for Vector Con¬trol in Drinking-Water Sources and Con¬tainers. Background Document for De¬vel¬opment of WHO Guidelines for Drink¬ing-water Quality. Available at: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/temephos-background-document.pdf?sfvrsn=c34fda71_4.
32. World Health Organization (2022) Man¬ual for Monitoring Insecticide Re¬sistance in Mosquito Vectors and Selecting Ap-propriate Interventions. Available at: https://www.who.int/publications/i/item/9789240051089 (access 22 June 2022).
33. Zaim M, Enayati A, Sedaghat M, Gouya M (2020) Guidelines for Prevention and Control of Aedes aegypti and Aedes al-bopictus in Iran. Sari: Mazandaran Uni-versity of Medical Sciences. p, 93.
34. Enayati A, Valadan R, Bagherzadeh M, Cheraghpour M, Nikookar SH, Fazeli-Dinan M, Hosseini-Vasoukolaei N, Sahraei Rostam F, Shabani Kordshouli R, Raeisi A, Nikpour F, Mirolyaei A, Bagheri F, Sed¬aghat MM, Zaim M, Weetman D, Hem¬ingway J (2024) Kdr genotyping and the first report of V410L and V1016I kdr mutations in voltage-gated sodium chan¬nel gene in Aedes aegypti (Diptera: Cu¬licidae) from Iran. Parasit Vectors. 17(1): 34.
35. Azari-Hamidian S, Harbach RE (2009) Keys to the adult females and fourth-instar lar¬vae of the mosquitoes of Iran (Diptera: Culicidae). Zootaxa. 2078(1): 1–33.
36. Carvalho DO, Nimmo D, Naish N, McKe-mey AR, Gray P, Wilke AB, Marrelli MMT, Virginio JF, Alphey1 L, Capurro ML (2014) Mass production of genetical¬ly modified Aedes aegypti for field re¬leases in Brazil. J Vis Exp. 83: e3579.
37. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YAL, Sekaran SD, Chinna K, Venu¬gopalan B, Vythilingam I (2017) A new paradigm for Aedes spp. surveil-lance using gravid ovipositing sticky trap and NS1 antigen test kit. Parasit Vectors. 10: 151.
38. World Health Organization (2022) Stand-ard Operating Procedure for Impregna-tion of Filter Papers for Testing Insecti-cide Susceptibility of Adult Mosquitoes in WHO Tube Tests. Available at: https://iris.who.int/handle/10665/35231 (access 4 March 2022).
39. World Health Organization (2022) Deter-mining Discriminating Concentrations of Insecticides for Monitoring Resistance in Mosquitoes: Report of a Multi-Centre La¬boratory Study and WHO Expert Con¬sul¬tations. Available at: https://www.who.int/publications/i/item/9789240045200 (access 27 March 2022).
40. World Health Organization (1981) In-struc¬tions for Determining the Susceptibility or Resistance of Mosquito Larvae to In¬secticides. Available at: https://iris.who.int/handle/10665/6961.
41. World Health Organization (2016) Moni-toring and Managing Insecticide Re-sistance in Aedes mosquito Populations: interim guidance for entomologists. Available at: https://www.who.int/publications/i/item/WHO-ZIKV-VC-16.1 (access 7 March 2016).
42. Abbott WS (1925) A method of compu-ting the effectiveness of an insecticide. J Econ Entomol. 18(2): 265–267.
43. Dusfour I, Vontas J, David J-P, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martins AJ, Kasai S, Chandre F (2019) Management of insec-ticide resistance in the major Aedes vec-tors of arboviruses: Advances and chal-lenges. PLOS Negl Trop Dis. 13(10): e0007615.
44. Kawada H, Oo SZM, Thaung S, Kawashi-ma E, Maung YNM, Thu HM, Thant KZ, Minakawa N (2014) Co-occurrence of point mutations in the voltage-gated so¬di¬um channel of pyrethroid-resistant Ae¬des aegypti populations in Myanmar. PLOS Negl Trop Dis. 8(7): e3032.
45. Linss JGB, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JBP, Valle D, Mar¬tins AJ (2014) Distribution and dissem¬ination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazil¬ian natural populations. Parasit Vectors. 7: 25.
46. Plernsub S, Saingamsook J, Yanola J, Lumjuan N, Tippawangkosol P, Walton C, Somboon P (2016) Temporal frequen-cy of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the im-pact of the mutations on the efficiency of thermal fogging spray with pyrethroids. Acta Trop. 162: 125–132.
47. Arslan A, Rathor HR, Mukhtar MU, Mush¬taq S, Bhatti A, Asif M, Israr A, Jam Farooq A (2016) Spatial distribution and insecticide susceptibility status of Aedes aegypti and Aedes albopictus in dengue affected urban areas of Rawalpindi, Pa¬kistan. J Vector Borne Dis. 53(2): 136–143.
48. Al Nazawi AM, Aqili J, Alzahrani M, McCall PJ, Weetman D (2017) Com-bined target site (kdr) mutations play a primary role in highly pyrethroid re-sistant phenotypes of Aedes aegypti from Saudi Arabia. Parasit Vectors. 10(1): 161.
49. Hidayati H, Nazni W, Lee H, Sofian-Azi-run M (2011) Insecticide resistance de-vel¬opment in Aedes aegypti upon selec-tion pressure with malathion. Trop Bio-med. 28(2): 425–437.
50. Deming R, Manrique-Saide P, Medina Bar¬reiro A, Cardeña EUK, Che-Mendoza A, Jones B, Liebman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A (2016) Spatial var¬iation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors. 9: 67.
51. Gray L, Florez SD, Barreiro AM, Vadillo-Sánchez J, González-Olvera G, Lenhart A, Manrique-Saide P, Vazquez-Pro-kopec GM (2018) Experimental evaluation of the impact of household aerosolized insecti¬cides on pyrethroid resistant Aedes ae¬gypti. Sci Rep. 8(1): 12535.
52. Rasli R, Cheong YL, Che Ibrahim MK, Farahini¬najua Fikri SF, Norzali RN, Naz¬arudin NA, Hamdan NF, Muhamed KA, Hafisool AA, Azmi RA, Ismail HA, Ali R, Hamid NA, Taib MZ, Omar T, Ah¬mad NW, Lee HL (2021) Insecticide re¬sistance in dengue vectors from hotspots in Selangor, Malaysia. PLoS Negl Trop Dis. 15(3): e0009205.
53. Adhikari K, Khanikor B (2021) Gradual reduction of susceptibility and enhanced detoxifying enzyme activities of labora-tory-reared Aedes aegypti under expo-sure of temephos for 28 generations. Toxicol Rep. 8: 1883–1891.
54. Palomino M, Pinto J, Yañez P, Cornelio A, Dias L, Amorim Q, Martins AJ, Len-hart A, Lima JBP (2022) First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasit Vec¬tors. 15(1): 254.
55. Ciau-Mendoza JA, Gómez-Rivera ÁS, Canto-Mis KL, Chan-Chable RJ, Gon-zález-Acosta C, Moreno-García M, Cor-rea-Morales F, Mis-Avila PCh (2022) Sus¬ceptibility status to temephos in larval Ae¬des aegypti and Aedes albopictus (Dip¬tera: Culicidae) populations from Quin¬tana Roo, southeastern Mexico. Fla En¬tomol. 105(3): 255–257.
56. Davila-Barboza JA, Gutierrez-Rodriguez SM, Juache-Villagrana AE, Lopez-Mon-roy B, Flores AE (2024) Widespread re-sistance to temephos in Aedes aegypti (Dip¬tera: Culicidae) from Mexico. In-sects. 15(2): 120.
57. Alsheikh AA, Mohammed W, Noureldin E, Daffalla O, Shrwani Y, Hobani KJ, Alsheikh FA, Alzahrani MH, Binsaeed AA (2016) Studies on Aedes aegypti re-sistance to some insecticides in the Jazan District, Saudi Arabia. J Egypt Soc Par-asitol. 46(1): 209–216.
58. Al Nazawi AM, Ashall S, Weetman D (2021) Susceptibility status of larval Aedes ae¬gypti mosquitoes in the Western Region of Saudi Arabia. Entomol Res. 51(8): 387–392.
59. Son-Un P, Choovattanapakorn N, Saingam¬sook J, Yanola J, Lumjuan N, Walton C, Somboon P (2018) Effect of relaxation of deltamethrin pressure on metabolic re¬sistance in a pyrethroid-resistant Aedes ae¬gypti (Diptera: Culicidae) strain harbor¬ing fixed P989P and G1016G kdr al¬leles. J Med Entomol. 55(4): 975–981.
60. Valle D, Bellinato DF, Viana-Medeiros PF, Lima JBP, Martins Junior AdJ (2019) Resistance to temephos and deltame¬thrin in Aedes aegypti from Brazil between 1985 and 2017. Mem Inst Oswaldo Cruz. 114: e180544.
61. Rahman RU, Cosme LV, Costa MM, Car-rara L, Lima JBP, Martins AJ (2021) In-secticide resistance and genetic structure of Aedes aegypti populations from Rio de Janeiro State, Brazil. PLOS Negl Trop Dis. 15(2): e0008492.
62. Lesmana SD, Maryanti E, Susanty E, Afan¬di D, Harmas W, Octaviani DN, Zulkarnain I, Pratama MAB, Mislindawati M (2022) Organophosphate resistance in Aedes ae-gypti: study from dengue hemorrhagic fe¬ver endemic subdistrict in Riau, Indone¬sia. Rep Bbiochem Mol Biol. 10(4): 589.
63. Ping LT, Yatiman R, Gek L (2001) Sus-ceptibility of adult field strains of Aedes aegypti and Aedes albopictus in Singa-pore to pirimiphos-methyl and perme-thrin. J Am Mosq Control Assoc. 17(2): 144–146.
64. Macoris MdLdG, Andrighetti MTM, Wan¬derley DMV, Ribolla PEM (2014) Im¬pact of insecticide resistance on the field control of Aedes aegypti in the State of São Paulo. Rev Soc Bras Med Tro. 47: 573–578.
65. Nkya TE, Akhouayri I, Kisinza W, David JP (2013) Impact of environment on mosquito response to pyrethroid insecti-cides: facts, evidences and prospects. Insect Bi¬ochem Mol Biol. 43(4): 407–416.
66. Nkya TE, Poupardin R, Laporte F, Ak-houayri I, Mosha F, Magesa S, Kisinza W, David JPh (2014) Impact of agricul-ture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 7: 480.
67. Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP (2008) Cross-in¬duction of detoxification genes by envi¬ron¬mental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol. 38(5): 540–551.
68. Soltani A, Vatandoost H, Oshaghi MA, Enayati AA, Chavshin AR (2017). The role of midgut symbiotic bacteria in re-sistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecti-cides. Pathog Glob Health. 111(6): 289–296.
69. Huang Y, Higgs S, Vanlandingham D (2017) Biological control strategies for mosqui¬to vectors of arboviruses. Insects. 8(1): 21.
70. Montenegro D, Cortés-Cortés G, Bal-buena-Alonso MG, Warner C, Camps M (2024) Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop. 260: 107410.
71. Weng SC, Masri RA, Akbari OS (2023) Advances and challenges in synthetic bi-ology for mosquito control. Trends Par-asitol. 40(1): 75–88.
72. Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10(3): 295–311.
Files
IssueArticles In Press QRcode
SectionOriginal Article
Keywords
Aedes aegypti; Organophosphates; Pyrethroids; Resistance; Iran

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Asgarian T, Enayati A, Moosa-Kazemi SH, Zaim M, Jaberhashemi SA, Saeidi Z, Oshaghi MA, Sedaghat M. Organophosphate and Pyrethroid Resistance Status of Invasive Aedes aegypti (Diptera:Culicidae) from Iran. J Arthropod Borne Dis. 2025;.