Original Article

Chemical Composition and Control Potential of Melia azedarach Extracts Against Culex pipiens

Abstract

Background: Culex pipiens (Diptera: Culicidae) poses a persistent global health challenge. The overuse of synthetic insecticides has led to resistance and environmental damage, underscoring the need for sustainable alternatives. Melia azedarach (Meliaceae) represents a promising source of bioactive com­pounds. This study aimed to comprehensively evaluate the potential of alkaloid extracts from M. azedarach against all life stages of Cx. pipiens and to characterize their phytochemical composition.
Methods: Crude alkaloid extracts were prepared from both plant parts. Ovicidal, larvicidal, pupicidal and adult repellent effects, were assessed through laborato­ry bioassays. The chemical profile of the extracts was determined using Gas Chromatography-Mass Spectrometry (GC-MS).
Results: Bioassays demonstrated significant ovicidal activity, with 100% egg mortality at 1% (w/v) concentration. Lar­vicidal activity was also notable at 1% (w/v). The fruit extract caused 100% mortality across the first three larval instars, while the leaf extract caused 100% mortality in the first two instars and 96.6% in the third. In the fourth instar, larvae showed 93.33 and 91.67% mortality with the fruit and leaf extracts, respectively. The extracts exhibited significant repellent effects, with rates of 63.00% and 60.00% at 1% (w/v) and consistently negative equilibrium ratios. GC-MS analysis showed the fruit extract was rich in insecticidal fatty acid esters, while the leaf extract contained repellent terpenoids like Piperitenone Oxide. Linoleic acid was a major shared compound, potentially underpinning the broad-stage efficacy.
Conclusion: These findings support the use of M. azedarach extracts as a promising, locally accessible and environ­mentally responsible strategy for integrated Cx. pipiens mosquito management.

1. Andriamifidy RF, Tjaden NB, Beier-kuhnlein
C, Thomas SM (2019) Do we know how mosquito disease vectors will respond to climate change?. Emerg Top Life Sci. 3(2): 115–132.
2. Brugman VA, Hernández-Triana LM, Med¬lock JM, Fooks AR, Carpenter S, John¬son N (2018) The role of Culex pipiens L. (Diptera: Culicidae) in virus trans¬mission in Europe. Int J Environ Res Public Health. 15(2): 389.
3. Haba Y, McBride L (2022) Origin and sta-tus of Culex pipiens mosquito eco¬types. Curr Biol. 32(5): R237–R246.
4. Negi C, Verma P (2018). Review on Cu¬lex quinquefasciatus: Southern House Mos-quito. Int J Life Sci Res. 4(1): 1563–1566.
5. Sarwar M (2016) Mosquito-borne viral in-fections and diseases among persons and interfering with the vector activities. Int J Vaccines Vaccination. 3(2): 00063.
6. Mohammed BR, Yayo AM, Ajanusi OJ, Lawal IA (2021) Relative abundance and molecular identification of Culex pipiens complex (Diptera: Culicidae), in Kura Lo¬cal Government Area, North-western Ni¬geria. Parasite Epidem Cont. 14: e00213.
7. Koosha M, Oshaghi MA, Sedaghat MM, Vatandoost H, Azari-Hamidian S, Abai MR, Hanafi-Bojd AA, Mohtarami F (2017) Sequence analysis of mtDNA COI barcode region revealed three hap-lo¬types within Culex pipiens assem¬blage. Exp Parasitol. 181: 102–110.
8. Aanouz I, El Khatabi K, Belhassana A, Bouachrine M, Lakhlifi T, El Idrissi M (2020) Session 2/Oral 3D Quantitative structure activity and molecular docking of 2-hydroxyisoquinoline-1, 3-dione an-alogues as inhibitors of hiv reverse tran-scriptase associated ribonuclease H.‏ Con¬grès International de l’Industrie En-vi¬ronnement et la Santé, 2020, October 5-8, Mohammedia, Morocco, p. 1.
9. Hemingway J, Hawkes NJ, McCarrol L, Ramnson H (2004) The molecular basis insecticide resistance in mosquitoes. In-sect Biochem and Mol Biol. 34: 653–665.
10. Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, pyre¬thrins, pyrethroids and insect sodium channels. J Int Union Biochem Mol Biol Life. 59 (3): 151–162.
11. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agri-culture: their benefits and hazards. In-terdiscip Toxicol. 2(1): 1–12.
12. Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B (2011) Effect of endocrine disruptor pesticides: a re¬view. Int J Environ Res Public Health. 8(6): 2265–2303.‏
13. Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mos-quito lar¬vicides. Indian J Med Res. 135(5): 581–598.
14. Pavela R (2016) History, presence and per¬spective of using plant extracts as ef-fective mosquito larvicides: a review. Plant Protect Sci. 52(4): 229–241.
15. Chatterjee S, Sarkar B, Bag S, Biswal D, Mandal A, Bandyopadhyay R, Sarkar D, Chatterjee A, Saha NC (2024) Mitigat¬ing the public health issues caused by the filarial vector, Culex quinquefascia¬tus (Diptera: Culicidae) through phyto¬control and larval source marker man¬agement. Appl Biochem Biotech¬nol. 196(8): 5013–5044.‏
16. Ragavendran K, Selvakumaran J, Mu-thuKana¬gavel M, Ignacimuthu S, Alhar-bi NS, Thiruvengadam M, Mutheeswa-ran S, Ganesan P (2024) Effect of Mos-quitocidal, histopathological alteration and non-target effects of Sigesbeckia orien¬talis L. on Anopheles stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti L. Vet Parasitol Reg Stud Re¬ports. 49: 100997.
17. Nathan SS, Savitha G, George DK, Nar-madha A, Suganya L, Chung PG (2006) Efficacy of Melia azedarach L. extract on the malarial vector Anopheles ste-phen¬si Liston (Diptera: Culicidae). Bio-resour Technol. 97(11): 1316–1323.
18. Harborne JB (1987) Metode Fitokimia: Penun¬tun Cara Modern Menganalisis Tum¬buhan (Phytochemical Method: a Modern Guide to Analyze Plants). 2nd edition. ITB publisher, West Java, Indo-nesia.
19. Sarikaya BB, Somer NU, Kaya GI, Onur MA, Bastida J, Berkov S (2013) GC-MS investigation and acetylcholinesterase in-hibitory activity of Galanthus rizehen¬sis. Z Naturforsch C J Biosci. 68(3–4): 118–124.
20. Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G (2016) Larvicid¬al and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingi¬ber-aceae) essential oil: an eco-friendly tool against malaria, dengue and lym¬phatic filariasis mosquito vectors?. J Parasitol Res. 115: 1807–1816.‏
21. Abbott WS (1925) The Value of the Dry Substitutes for Liquid Lime. J Econ En-tomol. 18: 265–267.
22. Abdulla NA, and Aljanabi MMK (2020) Toxicity of Aqueous and Organic Sol-vent Extracts of Melia azedarach (L) Leaves in the Larvae and Pupae of Cu-lex pipiens. Biopestic Int. 16(1): 13–19.
23. Hussein HS, Salem MZM, Soliman AM (2017) Repellent, attractive, and insecti-cidal effects of essential oils from Schi-nus terebinthifolius fruits and Corymbia citriodora leaves on two whitefly spe-cies, Bemisia tabaci and Trialeurodes ricini. Sci Hortic. 216: 111–119.
24. Veronesi R, Gentile G, Carrieri M, Mac-cagnani B, Stermieri L, Bellini R (2012) Seasonal pattern of daily activity of Ae-des caspius, Aedes detritus, Culex mod-estus and Culex pipiens in the Po Delta of northern Italy and significance for vec¬tor borne disease risk assessment. J Vec¬tor Ecol. 37(1): 49–61.
25. Mohammed NAG, Hassan AAH, Mo-hammed MO (2021) The effect of pyr-rolidinium bromide salt in the life of the southern cowpea beetle Callosobruchus Maculatus (Fab) (Coleoptera: Chrysome-lidae). IOP Conference Series: J Earth Environ Sci. 910 (1): 012140.
26. Souza APD, Vendramim JD (2000) Ati-vidade ovicida de extratos aquosos de meliáceas sobre a mosca branca Bemisia tabaci (Gennadius) biótipo B em to-mateiro. Sci Agric. 57: 403–406.‏
27. Veni T, Pushpanathan T, Mohanraj J (2017) Larvicidal and ovicidal activity of Ter¬minalia chebula Retz. (Family: Combre¬taceae) medicinal plant extracts against Anopheles stephensi, Aedes ae-gypti and Culex quinquefasciatus. J Parasit Dis. 41(3): 693–702.‏
28. Ranchitha B, Umavathi S, Thangam Y, Revathi S (2016) Chemical Constituents and Larvicidal Efficacy of Melia azeda-rach L Leaf Extract against Dengue Vec¬tor Aedes aegypti L (Diptera : Cu-licidae ). Int J Innov Res Sci Eng Tech-nol. 5(3): 3060–3070.
29. Rudayni HA, Basher NS, AL-keridis LA, Ibrahim NA, Abdelmageed E (2021) The efficiency of ethanolic extract of Oci¬mum basilicum leaves and flowers agiainst mos¬quito larvae. Entomol Appl Sci Lett. 8 (3-2021): 46–53.‏
30. Baz MM, Selim AM, Radwan IT, Alkhai-bari AM, Gattan HS, Alruhaili MH, Alasmari SM, Gad ME (2024) Evaluat-ing larvicidal, ovicidal and growth in-hibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Cu-licidae), the West Nile virus vector. Sci Rep. 14(1): 19660.
31. Ghazawy NAR, Radwan IT, Gattan HS, Alruhaili MH, Baz MM, AbdelFattah EA, Mashlawi AM, Selim A (2025) As-afetida plant extract as potential antiox-idant, antimicrobial, and odor retardant insecticidal agent against Culex pipiens. Sci Rep. 15(1): 27076.
32. Procópio TF, Fernandes KM, Pontual EV, Ximenes RM, de Oliveira ARC, Souza CDS, de Albuquerque Melo AMM, Na-varro DMAF, Paiva PMG, Martins GF, Napoleão TH (2015) Schinus terebinthi-folius leaf extract causes midgut dam-age, interfering with survival and devel-opment of Aedes aegypti larvae. PLoS One. 10(5): e0126612.‏
33. Koomson CK (2023) Adulticidal, ovicidal and repellent potencies of Alchornea cor¬difolia (Schum. and Thonn.) in the man¬agement of the malaria vector Anophe¬les gambiae (Diptera: Cu¬licidae). Ar¬thropods. 12(4): 251–259.‏
34. Naimi I, Zefzoufi M, Bouamama H, M’ hamed TB (2022) Chemical compo¬sition and repellent effects of powders and es-sential oils of Artemisia absinthi¬um, Me-lia azedarach, Trigonella foe¬num-grae-cum and Peganum harmala on Tribo¬li-um castaneum (Herbst)(Coleoptera: Te-nebrio¬nidae). Ind Crops Prod. 182: 114817.‏
35. Ngo JK, Leyva GNC, Mariano SPP, Pin-gol SJA, Ramirez RB (2020) Determin-ing the effectiveness of neem and papa-ya leaves as mosquito repellent coil. J Phys Conf Ser. 1529(3): 032052.
36. Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PE, Borgemeister C, Torto B (2014) Development and as-sessment of plantbased synthetic odor baits for surveillance and control of ma-laria vectors. PLoS One. 9(2): e89818.‏
37. Shilaluke KC, Moteetee AN (2022) Insec-ticidal activities and GC-MS analysis of the selected family members of Me¬liace-ae used traditionally as insecticides. Plants. 11(22): 3046.
38. Kamali M, Valizadeh J, Shaterian HR, Mottaghip¬isheh J (2023) Phytochemical Profiles and Antioxidant Activity of Ira-nian Melia azedarach L. J Med Plants By-products. 13(1): 51–56.
39. Omowanle J, Ayo RJ, Habila J, Ilekhaize J, Adegbe EA (2018) Physico-chemical and GC/MS analysis of some selected plant seed oils; castor, neem and rubber seed oils. FUW Trends Sci Tech J. 3: 644–651.
Files
IssueIn Press QRcode
SectionOriginal Article
Keywords
Common house mosquito Meliaceae Mosquito control Larvicidal activity Plant extracts

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hassan W, Zamani AA, Rashid Y, Jamshidi A. Chemical Composition and Control Potential of Melia azedarach Extracts Against Culex pipiens. J Arthropod Borne Dis. 2025;.