Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and its Phylogenetic Congruence
Abstract
Background: Wolbachia are common intracellular bacteria that infect different groups of arthropods including mosquitoes. These bacteria modify host biology and may induce feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI). Recently Wolbachia is being nominated as a bio-agent and paratransgenic candidate to control mosquito borne diseases.
Methods: Here we report the results of a survey for presence, frequency, and phylogenetic congruence of these endosymbiont bacteria in Culex pipiens populations in Northern, Central, and Southern parts of Iran using nested-PCR amplification of wsp gene.
Results: Wolbachia DNA were found in 227 (87.3%) out of 260 wild-caught mosquitoes. The rate of infection in adult females ranged from 61.5% to 100%, while in males were from 80% to 100%. The Blast search and phylogenetic analysis of the wsp gene sequence revealed that the Wolbachia strain from Iranian Cx. pipiens was identical to the Wolbachia strains of supergroup B previously reported in members of the Cx. pipiens complex. They had also identical sequence homology with the Wolbachia strains from a group of distinct arthropods including lepidopteran, wasps, flies, damselfly, thrips, and mites from remote geographical areas of the world.
Conclusion: It is suggested that Wolbachia strains horizontally transfer between unrelated host organisms over evolutionary time. Also results of this study indicates that Wolbachia infections were highly prevalent infecting all Cx. pipiens populations throughout the country, however further study needs to define Wolbachia inter-population reproductive incompatibility pattern and its usefulness as a bio-agent control measure.
Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O (2011) Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol. 28 (10): 2761–2772.
Azari-Hamidian S (2007) Larval habitat characteristics of mosquitoes of the genus Culex (Diptera: Culicidae) in Guilan Province, Iran. J Arthropod Borne Dis. 1(1): 9–20.
Azari-Hamidian S, Harbach RE (2009) Keys to the adult females and fourth-instar larvae of the mosquitoes of Iran (Dip- tera: Culicidae). Zootaxa. 2078: 1–33.
Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren, J. H (2006) Multilocus se- quence typing system for the endo- symbiont Wolbachia pipientis. Appl En- viron Microbiol. 72(11): 7098–7110.
Baldo L, Lo N, Werren JH (2005) Mosaic nature of the wolbachia surface pro- tein. J Bacteriol. 187(15): 5406–5418.
Banafshi O, Abai MR, Ladonni H, Bakhshi H, Karami H, Azari-Hamidian S (2013) The fauna and ecology of mosquito larvae (Diptera: Culicidae) in western Iran. Turk J Zool. 37(3): 298–307.
Bazzocchi C, Jamnongluk W, O'Neill SL, Anderson TJ, Genchi C, Bandi C (2000) wsp gene sequences from the Wolbachia of filarial nematodes. Curr Microbiol. 41(2): 96–100.
Beckmann JF, Fallon AM (2013) Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem Mol Biol. 43(9): 867–878.
Behbahani A (2012) Wolbachia infection and mitochondrial DNA comparisons among Culex mosquitoes in South West Iran. Pak J Biol Sci. 15(1): 54–57.
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JR (2014) Harness- ing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop.132: S150–163.
Chavshin A, Oshaghi M, Vatandoost H,
Yakhchali B, Zarenejad F, Terenius O (2015) Malpighian tubules are important determinants of Pseudomonas transsta- dial transmission and longtime persis- tence in Anopheles stephensi. Parasit Vectors. 8(1): 36.
Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S (2012) Iden- tification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step to- ward finding suitable paratransgenesis candidates. Acta Trop. 121(2): 129–134.
Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O (2014) Isolation and identification of culturable bacteria from wild Anophe- les culicifacies, a first step in a para- transgenesis approach. Parasit Vectors.7: 419.
Chen L, Zhu C, Zhang D (2013) Naturally occurring incompatibilities between dif- ferent Culex pipiens pallens popula- tions as the basis of potential mosquito control measures. PLoS Negl Trop Dis.7(1): e2030.
Cheng Q, Aksoy S (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol. 8(1): 125–132.
Clark ME, Veneti Z, Bourtzis K, Karr TL (2003) Wolbachia distribution and cy- toplasmic incompatibility during sperm development: the cyst as the basic cel- lular unit of CI expression. Mech Dev.120(2): 185–198.
Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V (1987) A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 37(1): 37–41.
Cordaux R, Michel‐Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol.14(2): 237–243.
Coutinho-Abreu IV, Zhu KY, Ramalho-Or- tigao M (2010) Transgenesis and par- atransgenesis to control insect-borne diseases: current status and future chal- lenges. Parasitol Int. 59(1): 1–8.
Dehghan H, Moosa-Kazemi SH, Sadraei J, Soleimani H (2014) The Ecological Aspects of Culex pipiens (Diptera: Cu- licidae) in Central Iran. J Arthropod Borne Dis. 8(1): 35–42.
Dehghan H, Sadraei J, Moosa-Kazemi SH, Baniani NA, Nowruzi F (2013) The molecular and morphological varia- tions of Culex pipiens complex (Dip- tera: Culicidae) in Iran. J Vector Borne Dis. 50(2): 111–120.
Dobson SL (2004) Evolution of Wolbachia cytoplasmic incompatibility types. Evo- lution. 58(10): 2156–2166.
Duron O, Bernard C, Unal S, Berthomieu A, Berticat C, Weill M (2006) Tracking factors modulating cytoplasmic in- compatibilities in the mosquito Culex pipiens. Mol Ecol. 15(10): 3061–3071.
Duron O, Boureux A, Echaubard P, Berthomieu A, Berticat C, Fort P, Weill M (2007) Variability and ex- pression of ankyrin domain genes in Wolbachia variants infecting the mos- quito Culex pipiens. J Bacteriol. 189 (12): 4442–4448.
Duron O, Raymond M, Weill M (2011) Many compatible Wolbachia strains coexist within natural populations of Culex pipiens mosquito. Heredity. 106 (6): 986–993.
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Pre- vention of insect-borne disease: an ap- proach using transgenic symbiotic bac- teria. Proc Natl Acad Sci U S A. 94(7):3274–3278.
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS, Cor- don-Rosales C, Richards FF, Whitham RG, Beard CB (1999) Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhod- nii. Med Vet Entomol. 13(2): 115–119.
Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, Beard CB (2008) Genetic transfor- mation of a Corynebacterial symbiont from the Chagas disease vector Tria- toma infestans. Exp Parasitol. 119(1):94–98.
Dyson EA, Kamath MK, Hurst GD (2002) Wolbachia infection associated with all-female broods in Hypolimnas bo- lina (Lepidoptera: Nymphalidae): evi- dence for horizontal transmission of a butterfly male killer. Heredity (Edinb).88(3): 166–171.
Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A (2011) "Bird bit- ing" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 11(7): 1577–1585.
Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scup- pa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D (20007) Bac- teria of the genus Asaia stably associ- ate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A. 104(21): 9047–9051.
Field L, James A, Turelli M, Hoffmann A (1999) Microbe‐induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol. 8(2):243–255.
Foster JM, Hoerauf A, Slatko BE, Taylor MJ (2011) The molecular biology, immu- nologyand chemotherapy of Wolbach- ia bacterial endosymbionts of filarial nematodes. In: Kennedy M, Harnett W, (Eds): Parasitic nematodes: molec- ular biology, biochemistry and immu- nology. Wallingford, UK, CABI, pp. 308–336.
Gerth M, Rothe J, Bleidorn C (2013) Trac- ing horizontal Wolbachia movements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. Mol Ecol. 22(24): 6149–6162.
Gotoh T, Noda H, Hong XY (2003) Wolbachia distribution and cytoplas- mic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity. 91(3): 208–216.
Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenet- ically distant insect species by a natu- rally occurring mechanism. Curr Biol.9(6): 313–316.
Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 45: 371–391.
Hilgenboecker K, Hammerstein P, Schlatt- mann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett.281(2): 215–220.
Huigens ME, Luck RF, Klaassen RH, Maas MF, Timmermans MJ, Stouthamer R (2000) Infectious parthenogenesis. Na- ture. 405(6783): 178–179.
Jamnongluk W, Kittayapong P, Baimai V, O'Neill SL (2002) Wolbachia infec- tions of tephritid fruit flies: molecular evidence for five distinct strains in a single host species. Curr Microbiol.45(4): 255–260.
Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplifica- tion: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol. 9(4): 393–405.
Jiggins FM (2002) The rate of recombina- tion in Wolbachia bacteria. Mol Biol Evol. 19(9): 1640–1643.
Khoshdel-Nezamiha F, Vatandoost H, Azari- Hamidian S, Bavani MM, Dabiri F, Entezar-Mahdi R, Chavshin AR (2013) Fauna and Larval Habitats of Mosqui- toes (Diptera: Culicidae) of West Azer- baijan Province, Northwestern Iran. J Arthropod Borne Dis. 8(2): 163–173.
Kikuchi Y, Fukatsu T (2003) Diversity of Wolbachia endosymbionts in heterop- teran bugs. Appl Environ Microbiol.69(10): 6082–6090.
Kittayapong P, Baisley KJ, Baimai V, O'Neill SL (2000) Distribution and di- versity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol. 37(3):340–345.
Kittayapong P, Jamnongluk W, Thipaksorn A, Milne JR, Sindhusake C (2003) Wolbachia infection complexity among insects in the tropical rice-field com- munity. Mol Ecol. 12(4): 1049–1060.
Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O'Neill SL, Thomson N, Sinkins SP, Parkhill J (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Bi- ol Evol. 25(9): 1877–1887.
Kodandaramaiah U, Weingartner E, Janz N, Dalen L, Nylin S (2011) Population structure in relation to host-plant ecol- ogy and Wolbachia infestation in the comma butterfly. J Evol Biol. 24(10):2173–2185.
Kvie KS, Hogner S, Aarvik L, Lifjeld JT, Johnsen A (2012) Deep sympatric mtDNA divergence in the autumnal moth (Epirrita autumnata). Ecol Evol.3(1): 126–144.
Lo N, Evans TA (2007) Phylogenetic diver- sity of the intracellular symbiont Wolbachia in termites. Mol Phyloge- net Evol. 44(1): 461–466.
Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH, Bordenstein SR, Bandi C (2007) Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol.57(3): 654–657.
Mahilum MM, Storch V, Becker N (2003) Molecular and electron microscopic identification of Wolbachia in Culex pipiens complex populations from the Upper Rhine Valley, Germany, and Cebu City, Philippines. J Am Mosq Control Assoc. 19(3): 206–210.
Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafari R, Aminian K, Fazeli-Var- zaneh RA, Durvasula R (2015) Aero- bic bacterial flora of biotic and abiotic compartments of a hyperendemic Zo- onotic Cutaneous Leishmaniasis (ZCL) focus. Parasit Vectors 8(1): 63.
Morais SA, Almeida F, Suesdek L, Marrelli MT (2012) Low genetic diversity in Wolbachia-Infected Culex quinquefas- ciatus (Diptera: Culicidae) from Brazil and Argentina. Rev Inst Med Trop Sao Paulo. 54(6): 325–329.
Narita S, Nomura M, Kageyama D (2007) A natural population of the butterfly Eurema hecabe with Wolbachia-in- duced female-biased sex ratio not by feminization. Genome. 50(4): 365–372.
Nikookar S, Moosa-Kazemi S, Oshaghi M, Yaghoobi-Ershadi M, Vatandoost H, Kianinasab A (2010) Species compo- sition and diversity of mosquitoes in Neka county, Mazandaran Province, northern Iran. Iran J Arthropod Borne Dis. 4(2): 26 –34.
Noda H, Miyoshi T, Zhang Q, Watanabe K, Deng Km (2001) Hoshizaki S. Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of inter- species transmission. Mol Ecol. 10(8):2101–2106.
O'Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL (2012) Open release of male mosqui- toes infected with a wolbachia bi- opesticide: field performance and in- fection containment. PLoS Negl Trop Dis. 6(11): e1797.
Parvizi P, Fardid F, Soleimani S (2013) De- tection of a New Strain of Wolbachia pipientis in Phlebotomus perfiliewi transcaucasicus, a Potential Vector of Visceral Leishmaniasis in North West of Iran, by Targeting the Major Sur- face Protein Gene. J Arthropod Borne Dis. 7(1): 46–55.
Pawelek KA, Niehaus P, Salmeron C, Hager EJ, Hunt GJ (2014) Modeling dynamics of culex pipiens complex populations and assessing abatement strategies for West Nile Virus. PLoS One. 9(9): e108452.
Pidiyar VJ, Jangid K, Dayananda KM, Kaznowski A, Gonzalez JM, Patole MS, Shouche YS (2003) Phylogenetic affiliation of Aeromonas culicicola MTCC 3249(T) based on gyrB gene sequence and PCR-amplicon sequence analysis of cytolytic enterotoxin gene. Syst Appl Microbiol. 26(2): 197–202.
Pinto SB, Stainton K, Harris S, Kambris Z, Sutton ER, Bonsall MB, Parkhill J, Sinkins SP (2013) Transcriptional reg- ulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic in- compatibility. PLoS Pathog. 9(10): e1003647.
Rasgon JL (2011) Using infections to fight infections: paratransgenic fungi can block malaria transmission in mosquitoes.Future Microbiol. 6(8): 851–853.
Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the Cal- ifornia Culex pipiens mosquito species complex: parameter estimates and in- fection dynamics in natural popula- tions. Genetics. 165(4): 2029–2038.
Rasgon JL, Scott TW (2004) An initial sur- vey for Wolbachia (Rickettsiales: Rick- ettsiaceae) infections in selected Cal- ifornia mosquitoes (Diptera: Culicidae). J Med Entomol. 41(2): 255–257.
Ravikumar H, Prakash BM, Sampathkumar S, Puttaraju HP (2011) Molecular sub- grouping of Wolbachia and bacterio- phage WO infection among some In- dian Drosophila species. J Genet. 90 (3): 507–510.
Ren X, Hoiczyk E, Rasgon JL (2008) Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog.4(8): e1000135.
Reuter M, Keller L (2003) High levels of multiple Wolbachia infection and re- combination in the ant Formica ex- secta. Mol Biol Evol. 20(5): 748–753.
Ricci I, Cancrini G, Gabrielli S, D'Amelio S,Favi G (2002) Searching for Wolbach- ia (Rickettsiales: Rickettsiaceae) in mos- quitoes (Diptera: Culicidae): large pol- ymerase chain reaction survey and new identifications. J Med Entomol.39(4): 562–567.
Ros VI, Fleming VM, Feil EJ, Breeuwer JA (2012) Diversity and recombination in Wolbachia and Cardinium from Bry- obia spider mites. BMC Microbiol.12(1): S13.
Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spi- ders. Curr Microbiol. 49(3): 208–214.
Russell JA, Funaro CF, Giraldo YM, Gold- man-Huertas B, Suh D, Kronauer DJ, Moreau CS, Pierce N E (2012) A ver- itable menagerie of heritable bacteria from ants, butterflies, and beyond:broad molecular surveys and a system- atic review. PLoS One. 7(12): e51027.
Salunke BK, Salunkhe RC, Dhotre DP, Walujkar SA, Khandagale AB, Chaudhari R, Chandode RK, Ghate HV, Patole MS, Werren JH, Shouche YS (2012) Determination of Wolbach- ia diversity in butterflies from Western Ghats, India, by a multigene approach. Appl Environ Microbiol. 78(12): 4458–4467.
Slatko BE, Luck AN, Dobson SL, Foster JM (2014) Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol. 195(2): 88–95.
Sunish IP, Rajendran R, Paramasivan R, Dhananjeyan KJ, Tyagi BK (2011) Wolbachia endobacteria in a natural population of Culex quinquefasciatus from filariasis endemic villages of south India and its phylogenetic impli- cation. Trop Biomed. 28(3): 569–576.
Talisuna AO, Bloland P, D'Alessandro U (2004) History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev. 17(1):235–254.
Taylor MJ, Hoerauf A, Townson S, Slatko BE, Ward SA (2014) Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology. 141 (1): 119–127.
Thipaksorn A, Jamnongluk W, Kittayapong P (2003) Molecular evidence of Wolbachia infection in natural popula- tions of tropical odonates. Curr Micro- biol. 47(4): 314–318.
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple se- quence alignment through sequence weighting, position-specific gap pen- alties and weight matrix choice. Nu- cleic Acids Res. 22(22): 4673–4680.
Townson H (2002) Wolbachia as a potential tool for suppressing filarial transmis- sion. Ann Trop Med Parasitol. 96(2): S117–127.
Tsai KH, Lien JC, Huang CG, Wu WJ, Chen WJ (2004) Molecular (sub) grouping of endosymbiont Wolbachia infection among mosquitoes of Taiwan. J Med Entomol. 41(4): 677–683.
Van Meer MM, Witteveldt J, Stouthamer R (1999) Phylogeny of the arthropod en- dosymbiont Wolbachia based on the wsp gene. Insect Mol Biol. 8(3): 399–408.
Vinogradova EB (2000) Culex pipiens pipiens mosquitoes: taxonomy, distri- bution, ecology, physiology, genetics, applied importance and control. Pen- soft Series Parasitologica No 2. Pen- soft Publishers, Sofia-Moscow. Wang S, Jacobs-Lorena M (2013) Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 31(3): 185–193.
Ward TW, Jenkins MS, Afanasiev BN, Ed- wards M, Duda BA, Suchman E, Ja- cobs-Lorena M, Beaty BJ, Carlson JO (2001) Aedes aegypti transducing den- sovirus pathogenesis and expression in Aedes aegypti and Anopheles gambiae
larvae. Insect Mol Biol. 10(5): 397–405. Wenseleers T, Sundstrom L, Billen J (2002) Deleterious olbachia in the ant For-mica truncorum. Proc Biol Sci. 269 (1491): 623–629.
Werren JH (1997a) Biology of Wolbachia.Annu Rev Entomol. 42: 587-609. Werren JH (1997b) Wolbachia run amok.Proc Natl Acad Sci U S A. 94(21):11154–11155.
Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of in- vertebrate biology. Nat Rev Microbiol.6(10): 741–751.
Werren JH, Bartos JD (2001) Recombina- tion in Wolbachia. Current Biology.11(6): 431–435.
Werren JH, Jaenike J (1995) Wolbachia and cytoplasmic incompatibility in my- cophagous Drosophila and their rela- tives. Heredity. 75(3): 320–326.
Zaim M, Cranston PS, (1986) Checklist and keys to the Culicinae of Iran (Diptera: Culicidae). Mosq Syst. 18: 233–245.
Zhou W, Rousset F, O'Neil S (1998) Phy- logeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 265(1395):509–515.
Files | ||
Issue | Vol 10 No 3 (2016) | |
Section | Original Article | |
Keywords | ||
Culex pipiens Wolbachia cytoplasmic incompatibility nested-PCR Iran |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |