Review Article

Utility of Complete Mitochondrial Genomes in Phylogenetic Classification of the Species of Anopheles (Culicidae: Anophelinae)

Abstract

Background: Among the blood-sucking insects, Anopheles mosquitoes have a very special position, because they transmit parasites of the genus Plasmodium, which cause malaria as one of the main vector-borne disease worldwide. The aim of this review study was to evaluate utility of complete mitochondrial genomes in phylogenetic classification of the species of Anopheles.Methods: The complete mitochondrial genome sequences belonging to 28 species of the genus Anopheles (n=32) were downloaded from NCBI. The phylogenetic trees were constructed using the ML, NJ, ME, and Bayesian inference meth­ods.Results: In general, the results of the present survey revealed that the complete mitochondrial genomes act very accu­rately in recognition of the taxonomic and phylogenetic status of these species and provide a higher level of support than those based on individual or partial mitochondrial genes so that by using them, we can meticulously reconstruct and modify Anopheles classification.Conclusion: Understanding the taxonomic position of Anopheles, can be a very effective step in better planning for controlling these malaria vectors in the world and will improve our knowledge of their evolutionary biology.
1. Manguin S (2013) Anopheles mosquitoes - New insights into malaria vectors. Intech Open Press, Rijeka, Croatia.
2. Lehane MJ (2005) The Biology of Blood-Sucking in Insects. Cambridge Univer-sity Press, UK.
3. Michel K, Suwanchaichinda C, Morlais I, Lambrechts L, Cohuet A, Awono-Am-bene PH, Simard F, Fontenille D, Kanost MR, Kafatos FC (2006) In-creased melaniz¬ing ac¬tivity in Anophe¬les gambi¬ae does not affect develop¬ment of Plas¬mo¬dium falciparum. Proc Natl Acad Sci. 103(45): 16858–16863.
4. Lehrer S (2010) Anopheles mosquito trans-mission of brain tumor. Med Hy¬pothe-ses. 74: 167–168.
5. Freitas LA, Russo CA, Voloch CM, Mu-taquiha OC, Marques LP, Schrago CG (2015) Diversification of the genus Anoph¬eles and a neotropical clade from the late Creta¬ceous. PLoS One. 10(8): e0134462.
6. Harbach RE (2013) The phylogeny and clas¬sification of Anopheles. In: Manguin S (Ed): Anopheles mosqui¬toes-new in¬sights into malaria vectors, IntechOpen Press, Rijeka, Croatia, pp. 3–55.
7. Peng XY, Zhou P, Duan XY, Qian ZQ (2016) The mitochondrial genomes of twelve Anopheles mosquitoes (Diptera: Culicidae) and their phylogenetic impli-cations. Conserv Genet Resour. 8: 1–4.
8. Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, Cameron E, Bhatt S, Gething PW, Hemingway J, Smith DL, Coleman M, Moyes CL (2017) Geo¬graphical distributions of African ma¬laria vector sibling species and evidence for insec¬ticide resistance. Malar J. 16: 85.
9. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM (2010) The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: oc-currence data, distri¬bution maps and bi-onomic précis. Parasite Vector. 3(1): 117.
10. White BJ, Kundert PN, Turissini DA, van Ekeris L, Linser PJ, Besansky NJ (2013) Dose and developmental re¬sponses of Anopheles merus larvae to salinity. J Exp Biol. 216: 3433–3441.
11. Temu EA, Minjas JN, Coetzee M, Hunt RH, Shift CJ (1998) The role of four anophe¬line species (Diptera: Culicidae) in malaria transmission in coastal Tan-zania. Trans R Soc Trop Med Hyg. 92: 152–158.
12. Cuamba N, Mendis C (2009) The role of Anopheles merus in malaria transmis¬sion in an area of southern Mozam¬bique. J Vector Dis. 46: 157–159.
13. Rosenberg R, Andre RG, Somchit L (1990) Highly efficient dry season trans-mis¬sion of malaria in Thailand. Trans R Soc Trop Med Hyg. 84: 22–28.
14. Obsomer V, Defourny P, Coosemans M (2007) The Anopheles dirus complex: spa¬tial distribution and environmental drivers. Malar J. 6: 26.
15. Sinka ME, Bangs MJ, Manguin S, Chareonviri¬yaphap T, Patil AP, Tem-perley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI (2011) The dominant Anopheles vectors of hu¬man malaria in the Asia-Pacific region: occurrence data, distri¬bution maps and bionomic précis. Parasite Vector. 4: 89.
16. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI (2011) Correction: The dom¬inant Anopheles vectors of human ma¬laria in the Americas: occurrence da-ta, distribution maps and bio¬nomic pré-cis. Parasite Vector. 4: 210.
17. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI (2010) The dominant Anoph¬eles vectors of human malaria in the Americas: occurrence data, distribu-tion maps and bionomic précis. Parasite Vec¬tor. 3: 72.
18. Takken W, Geene R, Adam W, Jetten TH, van-der-Velden JA (2002) Distribution and dynamics of larval populations of Anopheles messeae and An. atroparvus in the delta of the rivers Rhine and Meuse, The Netherlands. Ambio. 31: 212–218.
19. Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C (2010) Mosquitoes and their Control. Springer Press, Ber¬lin.
20. Fernandes L, Briegel H (2005) Reproduc-tive physiology of Anopheles gambiae and Anopheles atropar¬vus. J Vector Ecol. 30(1): 11–26.
21. Hiwat H, Bretas G (2011) Ecology of Anopheles darlingi Root with respect to vec¬tor importance: a review. Parasite Vector. 4: 177.
22. Garros C, van Bortel W, Trung HD, Coosemans M, Manguin S (2006) Re-view of the Minimus Complex of Anoph¬eles, main malaria vector in Southeast Asia: from taxo¬nomic issues to vector control strategies. Trop Med Int Health. 11: 102–114.
23. Linton YM, Dusfour I, Howard TM, Ruiz LF, Duc-Manh N, Ho-Dinh T, Sochanta T, Coosemans M, Harbach RE (2005) Anopheles (Cellia) epiroticus (Diptera: Culicidae), a new malaria vector species in the Southeast Asian Sundaicus Com-plex. Bull Entomol Res. 95: 329–339.
24. Vatandoost H, Emami SN, Oshaghi MA, Abai MR, Raeisi A, Piazzak N, Mahmoodi M, Akbarzadeh K, Sartipi M (2011) Ecol¬ogy of malaria vector Anopheles culicifacies in a malarious area of Sistan va Baluchestan Province, south-east Is¬lamic Republic of Iran. East Medi¬terr Health J. 17: 439–45.
25. Hanafi-Bojd AA, Vatandoost H, Oshaghi MA, Charrahy Z, Haghdoost AA, Seda-ghat MM, Abedi F, Soltani M, Raeisi A (2012) Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Cu-licidae) in a malari¬ous area of southern Iran. J Vector Borne Dis. 49: 91–100.
26. Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O (2014) Isolation and identification of cultura¬ble bacteria from wild Anopheles culicifacies, a first step in a para-transgen¬esis approach. Parasites Vec-tors. 7: 419.
27. Hanafi-Bojd AA, Vatandoost H, Oshaghi MA, Haghdoost AA, Shahi M, Sedaghat MM, Abedi F, Yeryan M, Pakari A (2012b) Ento¬mological and epidemio¬logical attributes for malaria transmis¬sion and implementation of vector con¬trol in southern Iran. Acta Trop. 121: 85–92.
28. Amir A, Sum JS, Lau YL, Vythilingam I, Fong MY (2013) Colonization of Anoph¬eles cracens: a malaria vector of emerg¬ing im¬portance. Parasites Vectors. 6: 81.
29. Motoki MT, Wilkerson RC, Sallum MAM (2009) The Anopheles albitarsis com¬plex with the recognition of Anopheles oryzalim¬netes Wilkerson and Motoki, n. sp. and Anophele janconnae Wilkerson and Sallum, n. sp. (Diptera: Culicidae). Mem Inst Os¬waldo Cruz. 104: 823–850.
30. Cardoso JDC, Bergo ES, Oliveira TMP, Sant'ana DC, Motoki MT, Sallum MAM (2012) New Records of Anophe¬les ho-mun¬cu¬lus in Central and Serra Do Mar Biodiversity Corridors of the At¬lantic Forest, Brazil. J Am Mosq Control Assoc. 2: 1–5.
31. Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, Hanafi-Bojd AA, Zamani G, Townson H (2006) Bio¬nomics of Anopheles ste-phensi Liston in the malarious area of Hormozgan Province, southern Iran, 2002. Acta Trop. 97: 196–203.
32. Oshaghi MA, Yaaghoobi F, Abai MR (2006) Pattern of mitochondrial DNA varia¬tion between and within Anopheles stephensi (Diptera: Culicidae) biological forms suggests extensive gene flow. Ac-ta Trop. 99: 226–233.
33. Abai MR, Mehravaran A, Vatandoost H, Oshaghi MA, Javadian E, Mashayekhi M, Mosleminia A, Piyazak N, Edallat H, Moh¬tarami F, Jabbari H, Rafi F (2008) Compara¬tive performance of imagicides on Anopheles stephensi, main malaria vector in a malarious area, southern Iran. J Vector Borne Dis. 45: 307– 312.
34. Gorouhi MA, Vatandoost H, Oshaghi MA, Raeisi A, Enayati AA, Mirhendi H, Hanafi-Bojd AA, Abai MR, Salim-Abadi Y, Rafi F (2016) Current Sus-ceptibility Status of Anopheles stephensi (Diptera: Culicidae) to Different Imagi-cides in a Malarious Area, Southeastern of Iran. J Arthropod Borne Dis. 10: 493–500.
35. Malhotra PR, Jatav CP, Chauhan RS (2000) Surface morphology of the egg of Anopheles stephensi stephensi sensu stricto (Diptera, Culicidae). Ital J Zool. 62: 147–151.
36. Sallum MAM, Forattini OP, Wilkerson RC (2000) Redescription of the adult and larva and first description of the pu-pa of Anopheles (Kerteszia) laneanus. J Am Mosq Control Assoc. 16: 86–92.
37. Oliveira TMP, Foster PG, Bergo ES, Nagaki SS, Sanabani SS, Marinotti O, Marinotti PN, Sallum MAM (2015) Mi-to¬chondrial Genomes of Anopheles (Ker¬teszia) (Diptera: Culicidae) From the At¬lantic Forest, Brazil. J Med En-tomol. 53: 790–797.
38. Carpenter S, LaCasse W (1955) Mosqui-toes of North America (North of Mex-ico). Berkeley: University of California Press, London.
39. Zhang WQ, Zhang MH (2013) Complete mitochondrial genomes reveal phylog-eny re¬lationship and evolutionary his-tory of the family Felidae. Genet Mol Res. 12: 3256–3262.
40. Oshaghi MA (2005) mtDNA inheritance in the mosquitoes of Anopheles ste¬phen-si. Mitochondrion. 5: 266–271.
41. Ghassemi-Khademi T (2017) Evaluation of phylogenetic relationships of An-tilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mito-chondrial genomes. JWB. 1: 1–11.
42. Ramirez CC, Dessen EM (2000) Chromo-somal evidence for sibling species of the ma¬laria vector Anopheles cruzii. Ge-nome. 43: 143–151.
43. Ramirez CC, Dessen EM (2000) Chromo-some differentiated populations of Anoph¬eles cruzii: evidence for a third sibling species. Genetica. 108: 73–80.
44. Oshaghi MA, Shemshad K, Yaghobi-Er-shadi MR, Pedram M, Vatandoost H, Abai MR, Akbarzadeh K, Mohtarami F (2007) Ge¬netic structure of the malaria vector Anophe¬les superpictus in Iran us-ing mitochondrial cytochrome oxi¬dase (COI and COII) and morphologic mark-ers: a new species com¬plex? Acta Trop. 101: 241–248.
45. Naddaf SR, Razavi MR, Bahramali G (2010) Molecular variation and distri-bution of Anopheles fluviatilis (Diptera: Culicidae) complex in Iran. Korean J Parasitol. 48: 231–236.
46. Swain S, Mohanty A, Tripathy HK, Ma-hapatra N, Kar SK Hazra RK (2010) Molec¬ular identification and phylogeny of Myzomyia and Neocellia series of Anopheles subgenus Cellia (Diptera: Cu-licidae). Infect Genet Evol. 10: 931–939.
47. Paredes-Esquivel C, Harbach RE, Town-son H (2011) Molecular taxonomy of mem¬bers of the Anopheles hyrcanus group from Thailand and Indonesia. Med Vet Entomol. 25: 348–352.
48. Mehravaran A, Oshaghi MA, Vatandoost H, Abai MR, Ebrahimzadeh A, Roodi AM, Grouhi A (2011) First report on Anopheles fluviatilis U in southeastern Iran. Acta Trop. 117: 76–81.
49. Karimian F, Oshaghi MA, Sedaghat MM, Waterhouse RM, Vatandoost H, Hanafi-Bojd AA, Ravasan NM, Chavshin AR (2014) Phy¬logenetic analysis of the ori¬ental-Palearctic-Afrotropical members of Anopheles (Cu¬licidae: Diptera) based on nuclear rDNA and mitochondrial DNA characteristics. Jpn J In¬fect Dis. 67: 361–367.
50. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Arte-mov G, Assour LA (2015) Mosquito ge-nomics. Highly evolvable malaria vec-tors: the ge¬nomes of 16 Anopheles mos-quitoes. Science. 347(6217): 1258522.
51. Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among ce-tarti¬o¬dactyls based on insertions of short and long interspersed elements: hippo-potamuses are the closest extant rela-tives of whales. Proc Natl Acad Sci USA. 96: 10261–10266.
52. Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mito-chon¬drial DNA from Anopheles funes-tus: an im¬proved dipteran mitochondrial genome anno¬tation and a temporal di-mension of mosquito evolution. Mol Phy¬logenet Evol. 39: 417– 423.
53. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S. 41: 95–98.
54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensi¬tivity of progressive multiple align-ment through sequence weighting, posi-tion-specific gap penalties and weight matrix choice. Nu¬cleic Acids Res. 22: 4673–4680.
55. Saitou N, Nei M (1987) The neighbor-joining method: A new method for re-con¬structing phylogenetic trees. Mol Biol Evol. 4: 406–425.
56. Rzhetsky A, Nei M (1992) A simple meth-od for estimating and testing min¬imum evolution trees. Mol Biol Evol. 9: 945–967.
57. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the boot¬strap. Evolution. 39: 783–791.
58. Kimura M (1980) A simple method for es-timating evolutionary rate of base sub-sti¬tu¬tions through comparative stud¬ies of nucleo¬tide sequences. J Mol Evol. 16: 111–120.
59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 30: 2725–2729.
60. Win NZ, Choi EY, Park J, Park JK (2017) Molecular phylogenetic relationship of the subfamily Nymphalinae (Lepidop-tera: Nym¬phalidae) in Myanmar, in-ferred from mito¬chondrial gene se-quences. J Asia Pac Bio¬divers. 10: 86–90.
61. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic in¬fer¬ence under mixed models. Bioin-for¬matics. 19: 1572–1574.
62. Huelsenbeck JP, Ranala B (2004) Fre-quentist properties of Bayesian posterior probabilities of phylogenetic trees under sim¬ple and complex substitution mod¬els. Syst Biol. 53: 904–913.
63. Ghassemi-Khademi T (2018) New insight into the phylogeny of the orchid bees (Api¬dae: Euglossini). Journal of Wild¬life and Bio¬diversity. 2(1): 19–35.
64. Coetzee M, Hunt RH, Wilkerson R, Della-Torre A, Coulibaly MB, Besansky NJ (2013) Anopheles coluzzii and Anophe-les amharicus, new members of the Anopheles gambiae complex. Zootaxa. 3619: 246–274.
65. Hao YJ, Zou YL, Ding YR, Xu WY, Yan ZT, Li XD, Fu WB, Li TJ, Chen B (2017) Complete mitochondrial ge-nomes of Anoph¬eles stephensi and An. dirus and comparative evolutionary mi-to¬chon¬driomics of 50 mos¬quitoes. Sci Rep. 7 (7666): 1–13.
66. Sallum MAM, Schultz TR, Wilkerson RC (2000) Phylogeny of Anophelinae (Dip-tera: Culicidae), based on morpho¬logi¬cal charac¬ters. Ann Entomol Soc Am. 93: 745–775.
Files
IssueVol 15 No 1 (2021) QRcode
SectionReview Article
Published2021-03-31
Keywords
Anopheles; Phylogeny; mtDNA; Taxonomy; Malaria vectors

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghassemi-Khademi T, Oshaghi MA, Vatandoost H, Madjdzadeh SM, Gorouhi MA. Utility of Complete Mitochondrial Genomes in Phylogenetic Classification of the Species of Anopheles (Culicidae: Anophelinae). J Arthropod Borne Dis. 15(1):1–20.