Original Article

Species Variety of the Calf and Human-Attracted Mosquitoes in Southwest Iran

Abstract

Background: Any mosquito control methods requires precise information about population dynamics, variety, biology and mosquito habitat. This research assessed Culicid mosquitoes' attraction to a human host and a calf to better understand their behavior. Methods: Adult mosquitoes were sampled in 22 weeks in southwestern Iran's Nur Ali Village from May to October 2015. The mosquitoes were drawn to the person and calf as bait, while the unbaited trap was also used. A substantial statistical difference between attracted mosquitoes to the hosts was determined in the T-test.Results: Within 22 weeks, 29821 mosquitoes were captured. Only 9% were collected from the human baited net trap, 89.1% from the calf baited net trap, and 1.9% from the unbaited net trap. The number of collected female mosquitoes was statistically significantly higher using the calf baited net trap of the total mosquitoes, 916 were randomly identified at the species level by local identification keys. Of these, 63 were Anopheles stephensi (human: 16%, calf: 75% and unbaited: 9%), 83 An. pulcherrimus (human: 27%, calf: 60% and unbaited: 13%), 118 Aedes caspius (human: 24%, calf: 69% and unbaited: 7%), 493 Culex tritaeniorhynchus (human: 52%, calf: 37% and unbaited: 11%), 153 Cx. quin­quefasciatus (human: 44%, calf: 47% and unbaited: 9%), and 6 Cx. theileri (human: 33%, calf: 50% and unbaited: 17%).Conclusion: The obtained results here provide useful insights into the mosquito population and the possibil­ity of using this information as an essential part of integrated vector management regarding the reemergence of malaria or other mosquito-borne.
1. World Health Organization (2014) A global brief on vector-borne diseases. Geneva: World Health Organization.
2. World Health Organization (2016) World Malaria Report, 2016. Geneva: World Health Organization.
3. Azari-Hamidian S, Yaghoobi-Ershadi MR, Javadian E, Mobedi I, Abai MR (2007) Review of dirofilariasis in Iran. J Gui¬lan Univ Med Sci. 15(60): 102–114.
4. Tavakolizadeh S, Mobedi I (2009) Orbital dirofilariasis in Iran: a case report. Ko-rean J Parasitol. 47(4): 397–399.
5. Chinikar S, Ghiasi SM, Shah-Hosseini N, Mostafavi E, Moradi M, Khakifirouz S, Rasi Varai FS, Rafigh M, Jalali T, Goya MM, Shirzadi MR, Zainali M, Fooks AR (2013) Preliminary study of dengue virus infection in Iran. Travel Med Infect Dis. 11(3): 166–169.
6. Ebrahimi M, Abadi A, Bashizadeh-Fakhar H, Fahimi E (2016) Dengue Fever in Iran: A Case Report. Zahedan J Res Med Sci. 18(12): 1–3.
7. Chinikar S, Shah-Hosseini N, Mostafavi E, Moradi M, Khakifirouz S, Jalali T (2013) Seroprevalence of West Nile virus in Iran. Vector-Borne Zoonotic Dis. 13(8): 586–589.
8. Aghaie A, Aaskov J, Chinikar S, Niedrig M, Banazadeh S, Mohammadpour HK (2016) Frequency of West Nile virus infection in Iranian blood donors. In-dian J Hematol Blood Transfus. 32(3): 343–346.
9. Naficy K, Saidi S (1970) Serological sur-vey on viral antibodies in Iran. Trop Geogr Med. 22(2): 183–188.
10. Salmanzadeh S, Foroutan-Rad M, Khademvatan S, Moogahi S, Bigdeli S (2015) Significant decline of malaria incidence in southwest of Iran (2001–2014). J Trop Med. 2015: 23767.
11. Harbach RE (2019) Mosquito Taxonomic Inventory. Available at: http://mosquitotaxonomic-inventory.info/ (accessed 06.02.20).
12. Harbach RE (2007) The Culicidae (Dip-tera): a review of taxonomy, classifi¬ca-tion and phylogeny. Zootaxa. 1668 (1): 591–638.
13. Service M (2012) Medical Entomology for Students. Cambridge University Press, Cambridge
14. Azari-Hamidian S (2007) Checklist of Ira¬nian mosquitoes (Diptera: Culicidae). J Vector Ecol. 32(2): 235–242.
15. Azari-Hamidian S, Norouzi B, Harbach RE (2019) A detailed review of the mos¬quitoes (Diptera: Culicidae) of Iran and their medical and veterinary im¬portance. Acta Trop. 194: 106–122.
16. Behbahani A (2012) Wolbachia infection and mitochondrial DNA comparisons among Culex mosquitoes in South West Iran. Pak J Biol Sci. 15(1): 54–57.
17. Maghsoodi N, Ladonni H, Basseri HR (2015) Species composition and sea-son¬al activities of malaria vectors in an area at reintroduction prevention stage, khuzestan, south-western Iran. J Ar-thro¬pod Borne Dis. 9(1): 60–70.
18. Navidpour S, Vazirianzadeh B, Harbach R, Jahanifard E, Moravvej SA (2012) The identification of culicine mos¬qui-toes in the Shadegan wetland in south-western Iran. J Insect Sci. 12(1): 105–110.
19. Hanafi-Bojd AA, Vatandoost H, Oshaghi MA, Charrahy Z, Haghdoost AA, Sed¬aghat MM (2012) Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Culicidae) in a malarious ar¬ea of southern Iran. J Vector Borne Dis. 49(2): 91–100.
20. Hanafi-Bojd AA, Azari-Hamidian S, Vatan¬doost H, Zabihollah C (2011) Spatio¬temporal distribution of malaria vec¬tors (Diptera: Culicidae) across differ¬ent climatic zones of Iran. Asian Pac J Trop Med. 4(6): 498–504.
21. Doosti S, Yaghoobi-Ershadi MR, Schaffner F, Moosa-Kazemi SH, Akbarzadeh K, Gooya MM (2016) Mosquito surveil¬lance and the first record of the in¬va¬sive mosquito species Aedes (Stego¬myia) albopictus (Skuse) (Diptera: Cu¬licidae) in southern Iran. Iran J Public Health. 45(8): 1064–1073.
22. Waite JL, Swain S, Lynch PA, Sharma S, Haque MA, Montgomery J (2017) In-creasing the potential for malaria elim-ination by targeting zoophilic vectors. Sci Rep. 7(1): 1–10.
23. World Health Organization (2019) World Malaria Report, 2019. Geneva: World Health Organization, p. 62.
24. Chaccour CJ, Ngha'bi K, Abizanda G, Bar¬rio AI, Aldaz A, Okumu F (2018) Tar¬geting cattle for malaria elimination: marked reduction of Anopheles ara¬biensis survival for over six months using a slow-release ivermectin im¬plant formulation. Parasit Vectors. 11 (1): 287–295.
25. Basseri H, Raeisi A, Ranjbar Khakha M, Pakarai A, Abdolghafar H (2010) Sea-sonal abundance and host-feeding pat-terns of anopheline vectors in malaria endemic area of Iran. J Parasitol Res. 2010: 671291.
26. Killeen GF, Kiware SS, Okumu FO, Sin-ka ME, Moyes CL, Massey NC (2017) Going beyond personal protection against mosquito bites to eliminate ma-laria transmission: population suppres-sion of malaria vectors that exploit both human and animal blood. BMJ Glob Health. 2(2): 1–9.
27. Sota T, Mogi M (1989) Effectiveness of zooprophylaxis in malaria control: a the¬oretical inquiry, with a model for mos¬quito populations with two blood-meal hosts. Med Vet Entomol. 3(4): 337–345.
28. Service M (1991) Agricultural develop-ment and arthropod-borne diseases: a re¬view. Rev Saude Publica. 25: 165–178.
29. Dobson A, Cattadori I, Holt RD, Ostfeld RS, Keesing F, Krichbaum K (2006) Sacred Cows and Sympathetic Squir-rels: The Importance of Biological Di-versity to Human Health. PLoS Med. 3(6): 714–718.
30. Njoroge MM, Tirados I, Lindsay SW, Vale GA, Torr SJ, Fillinger U (2017) Exploring the potential of using cattle for malaria vector surveillance and con¬trol: a pilot study in western Kenya. Parasit Vectors. 10(1): 18–33.
31. Rozendaal JA (1997) Vector Control: Meth¬ods for Use by Individuals and Com¬mu¬nities. Genève, Switzerland: World Health Organization, p. 45.
32. Donnelly B, Berrang-Ford L, Ross NA, Michel PA (2015) systematic, realist review of zooprophylaxis for malaria control. Malar J. 14(1): 313–328.
33. Lura T, Cummings R, Velten R, De Col-libus K, Morgan T, Nguyen K (2012) Host (avian) biting preference of south¬ern California Culex mosquitoes (Dip¬tera: Culicidae). J Med Entomol. 49 (3): 687–696.
34. Zaim M, Cranston P (1986) Checklist and keys to the Culicinae of Iran (Diptera: Culicidae). Mosq Syst. 18: 233–245.
35. Azari-Hamidian S, Harbach RE (2009) Keys to the adult females and fourth-instar larvae of the mosquitoes of Iran (Diptera: Culicidae). Zootaxa. 2078(1): 1–33.
36. Turell MJ, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F (2008) Seasonal distribution, biology, and hu-man attraction patterns of mosquitoes (Diptera: Culicidae) in a rural village and adjacent forested site near Iquitos, Peru. J Med Entomol. 45(6): 1165–1172.
37. Manouchehri AV, Zaim M, Emadi AM (1992) A review of malaria in Iran, 1975–1990. J Am Mosq Control Assoc. 8(4): 381–385.
38. Zaim M (1987) Malaria control in Iran-present and future. J Am Mosq Control Assoc. 3(3): 392–396.
39. Fakour S, Naserabadi S, Ahmadi E (2017) The first positive serological study on Rift Valley fever in ruminants of Iran. J Vector Borne Dis. 54(4): 348–352.
40. Jupp PG, Kemp A, Grobbelaar A, Lema P, Burt FJ, Alahmed AM, Al Mujalli D, Al Khamees M, Swanepoel R (2002) The 2000 epidemic of Rift Valley fe¬ver in Saudi Arabia: mosquito vector studies. Med Vet Entomol. 16(3): 245–252.
41. Takken W, Verhulst NO (2013) Host pref¬erences of blood-feeding mosqui-toes. An¬nu Rev Entomol. 58: 433–453.
42. Takken W (1991) The role of olfaction in host-seeking of mosquitoes: a review. Int J Trop Insect Sci. 12(1–2–3): 287–295.
43. Lyimo IN, Ferguson HM (2009) Eco¬log-ical and evolutionary determinants of host species choice in mosquito vec-tors. Trends Parasitol. 25(4): 189–196.
44. Tchouassi DP, Okiro ROK, Sang R, Cohn¬staedt LW, McVey DS, Torto B (2016) Mosquito host choices on live-stock am¬plifiers of Rift Valley fever virus in Kenya. Parasit vectors. 9: 184–191.
45. Gillies MT (1980) The role of carbon di-oxide in host finding by mosquitoes (Dip¬tera: Culicidae). Bull Entomol Res. 70: 525–532.
46. Tchouassi DP, Sang R, Sole CL, Bastos AD, Mithoefer K, Torto B (2012) Sheep skin odor improves trap cap-tures of mosquito vectors of Rift Val-ley fever. PLoS Negl Trop Dis. 6(11): 1–8.
47. Teng HJ, Wu YL, Lin TH (1999) Mosqui-to fauna in water-holding containers with emphasis on dengue vectors (Dip-tera: Culicidae) in Chungho, Taipei County, Tai¬wan. J Med Entomol. 36(4): 468–472.
48. Asigau S, Salah S, Parker PG (2019) As-sessing the blood meal hosts of Culex quinquefasciatus and Aedes taeniorhyn¬chus in Isla Santa Cruz, Ga-lápagos. Par¬asit Vectors. 12(1): 584.
49. Martínez-de la Puente J, Martínez J, Fer-raguti M, Morales-de la Nuez A, Cas-tro N, Figuerola JJP (2012) Genetic characterization and molecular identi-fication of the bloodmeal sources of the potential bluetongue vector Cu¬li-coides obsoletus in the Canary Islands, Spain. Parasit Vectors. 5: 147.
50. Martínez-de la Puente J, Moreno-Indias I, Enrique Hernández-Castellano L, Ar-güello A, Ruiz S, Soriguer R (2014) Host-feeding pattern of Culex theileri (Diptera: Cu¬licidae), potential vector of Dirofilaria im¬mitis in the Canary Is-lands, Spain. J Med En¬tomol. 49(6): 1419–1423.
51. Bhattacharyya DR, Handique R, Dutta LP, Dutta P, Doloi P, Goswami BK (1994) Host feeding patterns of Culex vishnui sub¬group of mosquitoes in Dibrugarh district of Assam. J Com-mun Dis. 26 (3): 133–138.
52. Bouma M, Rowland M (1995) Failure of passive zooprophylaxis: cattle own¬er-ship in Pakistan is associated with a higher prevalence of malaria. Trans R Soc Trop Med Hyg. 89(4): 351–353.
53. Seyoum A, Balcha F, Balkew M, Ali A, Gebre-Michael T (2002) Impact of cat-tle keeping on human biting rate of anophe¬line mosquitoes and malaria trans¬mission around Ziway, Ethiopia. East Afr Med J. 79(9): 485–490.
54. Daluwaththa HS, Karunaratne SH, De Silva WP (2019) Species composition of mosquitoes associated with a live-stock field station. Ceylon J Sci. 48(1): 77–84.
Files
IssueVol 15 No 2 (2021) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v15i2.7485
Keywords
Mosquitoes; Diversity; Iran

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Faraji-Fard P, Ahmadi-Angali K, Behbahani A. Species Variety of the Calf and Human-Attracted Mosquitoes in Southwest Iran. J Arthropod Borne Dis. 2022;15(2):162-170.