Evaluation of the Larvicidal and Repellency of Extracts and Silver Nanoparticles Biosynthesized with Zataria multiflora (Shirazi Thyme) against Anopheles stephensi
Abstract
Introduction: Mosquitoes transmit several diseases to humans. New and environmentally safe methods are needed to control mosquito populations effectively. This study aimed to evaluate the larvicidal and repellent properties of extracts and silver nanoparticles synthesized from Zataria multiflora (Shirazi thyme).
Methods: To determine the larvicidal and repellent properties of Z. multiflora, we tested different concentrations of synthesized silver nanoparticles and crude extract against this malaria vector.
Results: The crude extract exhibited weak larvicidal activity, with an LC50 of 616.52 μg/mL and an LC90 of 1109.74 μg/mL. However, the synthesized silver nanoparticles are highly active on the larvae of Anopheles stephensi, with an LC50 at 51.07 μg/mL and an LC90 at 119.04 μg/mL. Both the crude extract (ED50: 0.00031 μg/cm²; ED90: 0.0018 μg/ cm²) and silver nanoparticles (ED50: 0.000072 μg/cm²; ED90: 0.00048 μg/cm²) demonstrated significant repellent activity. Particle size analysis revealed a range of 24.56 to 63.76 nanometers, with an average size of 52.7 nanometers.
Conclusion: This study showed that Z. multiflora silver nanoparticles have significant larvicidal properties, so they are suggested as a nature-friendly larvicide.
2. Benelli G (2016) Green synthesized nano-particles in the fight against mosquito-borne diseases and cancer. Enzyme Mi-crob Technol. 95: 58-68.
3. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Mahesh Kumar P, Ni-coletti M (2015) Mosquitocidal and an-tibacterial activity of green-synthesized silver nanoparticles from Aloe vera ex-tracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res. 114(4): 1519–1529.
4. Amarasinghe L, Wickramarachchi P, Aberath¬na A, Sithara W, De Silva C (2020) Comparative study on larvicidal activity of green synthesized silver na-noparticles and Annona glabra (An-nonaceae) aqueous extract to control Ae¬des aegypti and Aedes albopictus (Dip¬tera: Culicidae). Heliyon. 6(6): e04322.
5. Madpathi S, Bannoth RN (2021) The effi-cacy of Ximenia americana plant medi-ated silver nanoparticles against dengue vector mosquito larvae [Aedes (Stego-myia) aegypti (Linnaeus, 1762)(Diptera: Culicidae)]. Int J Mosq Res. 8(5): 48–56.
6. Şengül Demirak MŞ, Canpolat E (2022) Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects. 13(2): 162.
7. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nano-particles to plants. Environ Sci Technol. 43(24): 9473–9479.
8. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cin-namomum camphora leaf. J Nanotech-nol. 18(10): 105104.
9. Osanloo M, Amini SM, Sedaghat MM, Amani A (2019) Larvicidal activity of chemically synthesized silver nanoparti-cles against Anopheles stephensi. J Pharm Negat Results. 10(1): 69–72.
10. Deletre E, Martin T, Campagne P, Bour-guet D, Cadin A, Menut C (2013) Re-pellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito. PLoS One. 8(12): e82103.
11. Pålsson K, Jaenson TG (1999) Plant prod-ucts used as mosquito repellents in Guin¬ea Bissau, West Africa. Acta Trop. 72 (1): 39–52.
12. Shanmugasundaram R, Jeyalakshmi T, Dutt MS, Murthy PB (2008) Larvicidal activ¬i¬ty of neem and karanja oil cakes against mosquito vectors, Culex quinquefascia¬tus (Say), Aedes aegypti (L.) and Anoph¬eles stephensi (L.). J Environ Biol. 29 (1): 43–45.
13. Norris EJ, Johnson JB, Gross AD, Bar-tholomay LC, Coats JR (2018) Plant es-sential oils enhance diverse pyrethroids against multiple strains of mosquitoes and inhibit detoxification enzyme pro-cesses. Insects. 9(4): 132–152.
14. Sanei-Dehkordi A, Soleimani-Ahmadi M, Akbarzadeh K, Salim Abadi Y, Paksa A, Gorouhi MA (2016) Chemical com-po¬sition and mosquito larvicidal proper-ties of essential oil from leaves of an Iranian indigenous plant Zhumeria maj-dae. J Essent Oil Bear. 19(6): 1454–1461.
15. Soleimani-Ahmadi M, Gorouhi MA, Mo-hammadi Azani S, SalimAbadi Y, Paksa A, Rashid G (2017) Larvicidial Effects of essential oil and methanol extract of Achilleawilhelmsii (Asteraceae) against Anopheles stephensi Liston (Diptera: Cu¬licidae), a malaria vector. J Kerman Univ Med Sci. 24(1): 58–67.
16. Soleimani-Ahmadi M, Abtahi SM, Mada-ni
A, Paksa A, Abadi YS, Gorouhi MA (2017) Phytochemical profile and mos-quito larvicidal activity of the essential oil from aerial parts of Satureja bacht-iarica Bunge against malaria and lym-phatic filariasis vectors. J Essent Oil Bear. 20(2): 328–336.
17. Soleimani-Ahmadi M, Sanei-Dehkordi A, Turki H, Madani A, Abadi YS, Paksa A (2017) Phytochemical properties and in-secticidal potential of volatile oils from Tanacetum persicum and Achillea kella-lensis against two medically important mosquitoes. J Essent Oil Bear. 20(5): 1254–1265.
18. Sanei-Dehkordi A, Soleimani-Ahmadi M, Abadi YS, Paksa A (2019) Wild chive oil is an extremely effective larvicide against malaria mosquito vector Anoph-eles stephensi. Asian Pac J Trop Med. 12(4): 170–174.
19. Vatandoost H, Nikpour F, Hanafi-Bojd AA, Abai MR, Khanavi M, Hajiiakhondi A, Raesi A, Nejati J (2019) Efficacy of ex¬tractions of Iranian native plants against main malaria vector, Anopheles ste¬phensi in Iran for making appropriate formulation for disease control. J Ar¬thropod Borne Dis. 13(4): 344–352.
20. Torabi Pour H, Shayeghi M, Vatandoost H, Abai MR (2016) Study on larvicidal effects of essential oils of three Iranian native plants against larvae of Anophe¬les stephensi (Liston). Vector Biol J. 1 (2): 2–6.
21. MA Oshaghi, R Ghalandari, H Vatandoost, M Shayeghi, M Kamali-nejad, H Toura¬bi-Khaledi, M Abolhassani, M Hashemza¬deh (2003) Repellent effect of extracts and essential oils of Citrus limon (Ru¬taceae) and Melissa officinalis (Labi¬atae) against main malaria vector, Anopheles stephensi (Diptera: Culicidae). Iran J Pub¬lic Health. 32(4): 47–52.
22. Muthukumaran U, Govindarajan M, Ra-jeswary M, Hoti S (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mos¬quitoes. Parasitol Res. 114(5): 1817–1827.
23. Osanloo M, Amini SM, Sedaghat MM, Amani A (2019) Larvicidal activity of chemically synthesized silver nanoparti-cles against Anopheles stephensi. J Pharm Negat Results. 10(1): 69–72.
24. Benelli G, Kadaikunnan S, Alharbi NS, Govindarajan M (2018) Biophysical char¬acterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mos¬quito vectors of public health relevance and impact on non-target aquatic bio¬con¬trol agents. Environ Sci Pollut Res Int. 25(11): 10228–10242.
25. Salim-Abadi Y, Asadpour M, Sharifi I, Sanei-Dehkordi A, Gorouhi MA, Paksa A, Tayyebi Z, Aghaei-Afshar A (2017) Baseline susceptibility of filarial vector Culex quinquefasciatus (Diptera: Cu-licidae) to five insecticides with differ-ent modes of action in southeast of Iran. J Arthropod Borne Dis. 11(4): 453–462.
26. Abadi YS, Sanei-Dehkordi A, Paksa A, Gorouhi MA, Vatandoost H (2021) Mon¬itoring and mapping of insecticide re¬sistance in medically important mosqui¬toes (Diptera: Culicidae) in Iran (2000–2020): A review. J Arthropod Borne Dis. 15(1): 21–40.
27. Hazratian T, Paksa A, Sedaghat MM, Vatandoost H, Moosa-Kazemi SH, Sanei-Dehkordi A, Salim-Abadi Y, Pirmo¬hammadi M, Yousefi S, Amin M, Oshaghi M (2019) Baseline susceptibility of Culiseta longiareolata (Diptera: Cu¬licidae) to different imagicides, in eastern Azer¬baijan, Iran. J Arthropod Borne Dis. 13 (4): 407–415.
28. Dasgupta N, Ranjan S, Mundekkad D, Ra¬malingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int. 69: 381–400.
29. Sorbiun M, Shayegan Mehr E, Ramazani A, Mashhadi Malekzadeh A (2018) Bio-synthesis of metallic nanoparticles using plant extracts and evaluation of their an-tibacterial properties. Nanochemistry Res. 3(1): 1–16.
30. Muthukumaran U, Govindarajan M, Ra-jeswary M (2015) Green synthesis of sil-ver nanoparticles from Cassia rox-burghii-a most potent power for mos¬qui-to control. Parasitol Res. 114(12): 4385–4395.
31. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes ae¬gypti and Anopheles stephensi Liston (Dip¬tera: Culicidae). Parasitol Res. 109(3): 823–831.
32. Dua VK, Pandey A, Alam M, Dash A (2006) Larvicidal activity of Hibiscus abelmoschus Linn (Malvaceae) against mosquitoes. J Am Mosq Control Assoc. 22(1): 155–157.
33. Elumalai D, Hemavathi M, Deepaa CV, Kaleena PK (2017) Evaluation of phy-tosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vec¬tors. Parasite Epidemiol Control. 2(4): 15–26.
34. Geetha R, Roy A (2014) Essential oil re-pellents-a short review. Int J Drug Dev Res. 6(2): 12–17.
35. Sharififar F (2007) Antibacterial activity of the crude extract and fractions of Za-taria multiflora Boiss. Pharm Biol. 45 (7): 491–495.
36. Benelli G (2015) The best time to have sex: mating behaviour and effect of day-light time on male sexual competitive-ness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasi¬tol Res. 114(3): 887–894.
37. World Health Organization (1970) Insec-ticide resistance and vector control. 17th Repot of WHO Expert Committee on Insecticides. WHO Tech Rep Ser. 443: 47–71.
38. Murugan K, Vahitha R, Baruah I, Das S (2003) Integration of botanical and mi-crobial pesticides for the control of filar-ial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Ann Emerg Med. 12(1/2): 12–23.
39. Finney D (1947) The estimation from in-dividual records of the relationship be-tween dose and quantal response. Bio-metrika. 34(3): 320–334.
40. Malengier B, Goessens T, Mafo FF, De Vrieze M, Van Langenhove L, Wanji S (2015) Model‐based determination of the influence of textile fabric on bioassay analysis and the effectiveness of a tex¬tile slow‐release system of DEET in mos¬quito control. Pest Manag Sci. 71(8): 1165–1174.
41. Kim D-Y, Leepasert T, Bangs MJ, Chareonviriyaphap T (2021) Evaluation of mosquito attractant candidates using a high-throughput screening system for Aedes aegypti (L.), Culex quinque¬fas-ciatus and Anopheles minimus Theobald (Diptera: Culicidae). Insects. 12(6): 528–542.
42. Badolo A, Ilboudo‐Sanogo E, Ouédraogo AP, Costantini C (2004) Evaluation of the sensitivity of Aedes aegypti and Anophe¬les gambiae complex mosqui¬toes to two insect repellents: DEET and KBR 3023. Trop Med Int Health. 9(3): 330–334.
43. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jay-aseelan C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. 108(6): 1541–1549.
44. Govindarajan M, Jebanesan A, Pushpana-than T, Samidurai K (2008) Studies on effect of Acalypha indica L. (Euphorbia-ceae) leaf extracts on the malarial vec¬tor, Anopheles stephensi Liston (Dip¬tera: Culicidae). Parasitol Res. 103(3): 691–695.
45. Santhoshkumar T, Rahuman AA, Raja-kumar G, Marimuthu S, Bagavan A, Jay¬aseelan C (2011) Synthesis of silver na¬noparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 108(3): 693–702.
46. Qiu H, McCall JW, Wonjun H (1998) For-mulation of topical insect repellent N Ndiethyl-m-toluamide (DEET): vehicle effects on DEET in vitro skin permea-tion. Int J Pharm. 163(4): 167–176.
47. Qiu H, Jun W, McCall JW (1998) Phar¬ma-cokinetics, formulation, and safety of insect repellent N N-diethyl-3-methylben¬zamide (DEET): a review. J Am Mosq Control Assoc. 14(2): 12–27.
48. Chokechaijaroenporn O, Bun-yapraphatsara N, Kongchuensin S (1994) Mosquito re¬pellent activities of Ocimum volatile oils. Phytomedicine. 1(2): 135–139.
49. Trongtokit Y, Rongsriyam Y, Komalamis-ra N, Apiwathnasorn C (2005) Compar-ative repellency of 38 essential oils against mosquito bites. Phytother Res. 19(4): 303–309.
50. Kelidari HR, Moemenbellah-Fard MD, Mor¬teza-Semnani K, Amoozegar F, Shah¬riari-Namadi M, Saeedi M (2021) Solid-lipid nanoparticles (SLN) containing Za¬taria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. J Parasit Dis. 45: 101–108.
51. Yang P, Ma Y (2005) Repellent effect of plant essential oils against Aedes al-bopictus. J Vector Ecol. 30(2): 231–234.
52. Fradin MS (1998) Mosquitoes and mos-quito repellents: a clinician’s guide. Ann Intern Med. 128(11): 931–940.
53. Shaalan EAS, Canyonb D, Younesc MWF, Abdel-Wahaba H, Mansoura AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int. 31(8): 1149–1166.
54. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparti-cles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 275 (2): 496–502.
55. Balaji D, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar B, Venkata-raman A (2009) Extracellular biosynthe-sis of functionalized silver nanoparticles by strains of Cladosporium cladospori-oides fungus. J Colloids Surf B Bioin-terfaces. 68(1): 88–92.
Files | ||
Issue | Articles In Press | |
Section | Original Article | |
Keywords | ||
Larvicidal; Repellency; Zataria multiflora; Anopheles stephensi; Silver nanoparticles |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |