Original Article

Laboratory Evaluation of Synthetic Attractants for Anopheles stephensi Using High-Throughput Screening: A Step Towards Development of Mosquito Traps

Abstract

Background: Diseases such as malaria are transmitted by Anopheles species, among which Anopheles stephensi is one of the most important malaria vectors in Iran. Reducing the transmission of mosquito-borne diseases depends on con­trolling the mosquito vector or minimizing human-vector contact. A promising method for control, surveillance, and monitoring involves using synthetic attractants in traps to target vectors. This study aims to determine the effective dose of octenol, isovaleric acid, lactic acid, hexanoic acid, isoamyl alcohol, myristic acid, and ammonium hydrogen bicar­bonate using the high-throughput screening system (HTSS) device in the laboratory.

Methods: After rearing An. stephensi in the insectary, High-Throughput Screening System (HTSS) assay was used to obtain the 50% and 90% effective dose (ED) of the attractive compounds. Probit analysis was used to analyze the re­sults and prepare the regression lines of ED50 and ED90.

Results: This study showed that An. stephensi had the highest absorption to isoamyl alcohol (ED50= 0.57 mL/L, ED90= 1.04 mL/L), followed by isovaleric acid (ED50= 1.96 mL/L, ED90= 3.00 mL/L), myristic acid (ED50= 24.77 g/L, ED90= 47.08 g/L), octenol (ED50= 26.64 mL/L, ED90= 54.36 mL/L) and lactic acid (ED50= 54.98 mL/L, ED90= 132.9 mL/L), while hexanoic acid (ED50= 87.50 mL/L, ED90= 244.49 mL/L) per liter and ammonium hydrogen bicarbonate (ED50= 93.84 g/L, ED90= 234.01 g/L) showed the lowest absorption rate.

Conclusion: Our laboratory results identified isoamyl alcohol and isovaleric acid as highly effective attractants for An. stephensi. These compounds are strong candidates for inclusion in field-deployable traps after further validation.

1. Mehravaran A, Vatandoost H, Oshaghi MA, Abai MR, Edalat H, Javadian E, Mash¬ayekhi M, Piazak N, Hanafi-Bojd AA (2012) Ecology of Anopheles stephensi in a malarious area, southeast of Iran. Ac¬ta Med Iran. 50(1): 61–65.
2. Oshaghi M, Yaaghoobi F, Vatandoost H, Abaei M, Akbarzadeh K (2006) Anophe-les stephensi biological forms; geograph-ical distribution and malaria transmis¬sion in malarious regions of Iran. Pak J Biol Sci. 2: 294–298.
3. Organization WHO (2023) World malaria report 2023: World Health Organization.
4. Neafsey DE, Taylor AR, MacInnis BL (2021) Advances and opportunities in malaria population genomics. Nat Rev Genet. 22 (8): 502–517.
5. Hawkes FM, Dabiré RK, Sawadogo SP, Torr SJ, Gibson G (2017) Exploiting Anophe¬les responses to thermal, odour and vis¬ual stimuli to improve surveillance and control of malaria. Sci Rep. 7(1): 17283.
6. Otto TD, Gilabert A, Crellen T, Böhme U, Arnathau C, Sanders M (2018) Ge¬nomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol. 3(6): 687–697.
7. Maekawa E, Aonuma H, Nelson B, Yoshi-mura A, Tokunaga F, Fukumoto S, Kanuka H (2011) The role of proboscis of the malaria vector mosquito Anopheles ste¬phensi in host-seeking behavior. Parasit Vector. 4: 10.
8. Wagman JM, Achee NL, Grieco JP (2015) Insensitivity to the spatial repellent ac-tion of transfluthrin in Aedes aegypti: a heritable trait associated with decreased insecticide susceptibility. PLoS Negl Trop Dis. 9(4): e0003726.
9. Liu N (2015) Insecticide resistance in mos-quitoes: impact, mechanisms and re-search directions. Annu Rev Entomol. 60: 537–559.
10. Debboun M, Strickman D (2013) Insect re¬pellents and associated personal protec¬tion for a reduction in human disease. Med Vet Entomol. 27(1): 1–9.
11. Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L (2019) Alterna¬tive strategies for mosquito-borne arbo¬virus control. PLoS Negl Trop Dis. 13(1): e0006822.
12. Dormont L, Mulatier M, Carrasco D, Co-huet A (2021) Mosquito attractants. J Chem Ecol. 47: 351–393.
13. Seenivasagan T, Guha L, Parashar B, Agrawal O, Sukumaran D (2014) Olfac-tion in Asian tiger mosquito Aedes al-bopictus: flight orientation response to certain saturated carboxylic acids in hu-man skin emanations. Parasitol Res.113: 1927–1932.
14. Murphy MW, Dunton RF, Perich MJ, Row¬ley WA (2001) Attraction of Anopheles (Diptera: Culicidae) to volatile chemi¬cals in Western Kenya. J Med Entomol. 38(2): 242–244.
15. Takken W, Kline D (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. J Am Mosq Control Assoc. 5(3): 311–316.
16. Kim DY, Leepasert T, Bangs MJ, Chareonviri¬yaphap T (2021) Evaluation of mosquito attractant candidates using a high-throughput screening system for Aedes aegypti (L.), Culex quinquefas-ciatus Say. and Anopheles minimus The-obald (Diptera: Culicidae). Insects. 12(6): 528.
17. Sukumaran D (2016) A review on use of attractants and traps for host seeking Ae-des aegypti mosquitoes. J Vector Borne Dis. 58(1): 1–11.
18. De Moraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG, Read AF, Mescher MC (2014) Malaria-induced changes in host odors enhance mosquito attraction. Proc Natl Acad Sci U S A. 111(30): 1179–1184.
19. van Loon JJ, Smallegange RC, Buko-vinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR (2015) Mosquito attrac-tion: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 41: 567–573.
20. Geier M, Bosch OJ, Boeckh J (1999) Am-monia as an attractive component of host odour for the yellow fever mosquito, Ae¬des aegypti. Chem Senses. 24(6): 647–653.
21. Aldridge RL, Britch SC, Allan SA, Tsiko-lia M, Calix LC, Bernier UR, Linthicum KJ (2016) Comparison of volatiles and mosquito capture efficacy for three car-bo¬hydrate sources in a yeast-fermenta-tion CO2 generator. J Am Mosq Control Assoc. 32(4): 282–291.
22. Mathew N, Ayyanar E, Shanmugavelu S, Muthuswamy K (2013) Mosquito at-tractant blends to trap host seeking Ae-des aegypti. Parasitol Res. 112: 1305–1312.
23. Dogan EB, Rossignol PA (1999) An ol-factometer for discriminating between at¬traction, inhibition and repellency in mos¬quitoes (Diptera: Culicidae). J Med En¬tomol. 36(6): 788–793.
24. Kim D-Y, Leepasert T, Bangs MJ, Chareonviri¬yaphap T (2021) Dose-re-sponse assay for synthetic mosquito (Dip¬tera: Culicidae) attractant using a high-throughput screening system. Insects. 12 (4): 355–362.
25. FAO/IAEA (2017) Guidelines for Stand-ardised Mass Rearing of Anopheles Mos¬quitoes-Version 1.0. FAO, Rome, Italy.
26. Nasirian H, Ladonni H (2006) Artificial bloodfeeding of Anopheles stephensi on a membrane apparatus with human whole blood. J Am Mosq Control Assoc. 22(1): 54–56.
27. Knols BG, Jong Rd, Takken W (1994) Trapping system for testing olfactory re-sponses of the malaria mosquito Anoph-eles gambiae in a wind tunnel. Med Vet Entomol. 8(4): 386–388.
28. Grieco JP, Achee NL, Sardelis MR, Chau-han KR, Roberts DR (2005) A novel high-throughput screening system to evaluate the behavioral response of adult mosqui¬toes to chemicals. J Am Mosq Control Assoc. 21(4): 404–411.
29. World Health Organization (WHO) (2013) Guidelines for efficacy testing of spatial repellents. World Health Organization, Geneva.
30. Acree Jr F, Turner R, Gouck H, Beroza M, Smith N (1968) L-Lactic acid: a mos-quito attractant isolated from humans. Sci¬ence. 161(3848): 1346–1347.
31. Smith CN, Smith N, Gouck HK, Weidhaas D, Gilbert I, Mayer M (1970) L-lactic acid as a factor in the attraction of Aedes aegypti (Diptera: Culicidae) to human hosts. Ann Entomol. 63(3): 760–770.
32. Kline DL (1994) Olfactory attractants for mosquito surveillance and control: 1-oc-ten-3-ol. J Am Mosq Control Assoc. 10 (2): 280–287.
33. Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, van Loon JJ, Takken W (2012) A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol. 38: 235–244.
34. Allan S, Bernier UR, Kline D (2006) At-traction of mosquitoes to volatiles asso-ciated with blood. J Vector Ecol. 31(1): 71–78.
35. Kim D, Rusch TW, Lee D-K (2021) Re-sponse of Culex pipiens pallens to visual and olfactory stimuli from a mosquito trap. J Am Mosq Control Assoc. 37(2): 76–82.
36. Tian J, Mao J, Yu B, Fouad H, Ga’al H, Mao G, Mo J (2018) Laboratory and field evaluation of multiple compound at¬tractants to Culex pipiens pallens. J Med Entomol. 55(4): 787–794.
37. Tsikolia M, Tabanca N, Kline DL, Demirci B, Yang L, Linthicum KJ (2022) Studies on the volatiles composition of stored sheep wool and attractancy toward Aedes aegypti mosquitoes. Insects. 13(2): 208–219.
38. Verhulst NO, Mbadi PA, Kiss GB, Muka-bana WR, van Loon JJ, Takken W, Small¬egange RC (2011) Improvement of a syn¬thetic lure for Anopheles gambiae using compounds produced by human skin mi¬crobiota. Malar J. 10: 1–9.
39. Stanczyk NM, Brugman VA, Austin V, Sanchez-Roman Teran F, Gezan SA, Em¬ery M (2019) Species-specific altera-tions in Anopheles mosquito olfactory respons¬es caused by Plasmodium infection. Sci Rep. 9(1): 3396.
40. Bosch OJ, Geier M, Boeckh J (2000) Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses. 25(3): 323–330.
41. Pause BM (2004) Is the human skin a pheromone‐producing organ? J Cosmet Dermatol. 3(4): 223–228.
42. Zeng X-n, Leyden JJ, Lawley HJ, Sawano K, Nohara I, Preti G (1991) Analysis of characteristic odors from human male axillae. J Chem Ecol. 17: 1469–1492.
43. Giraldo D, Rankin-Turner S, Corver A, Tauxe GM, Gao AL, Jackson DM (2023) Human scent guides mosquito thermo-taxis and host selection under natural-istic conditions. Curr Biol. 33(12): 2367–2382.
44. Andrianjafy T, Ravaomanarivo L, Rako-tondramanga M, Ramanandraibe V, Mavingui P, Lemaire M (2017) New bioassay to evaluate repellency and at-tractively of chemical products against adults mosquitoes Aedes albopictus and Culex quinquefasciatus. Ann Communi¬ty Med Pract. 3: 1020.
45. Verhulst NO, Mukabana WR, Takken W, Smallegange RC (2011) Human skin mi-crobiota and their volatiles as odour baits for the malaria mosquito Anophe¬les gam¬biae ss. Entomol Exp Appl. 139(2): 170–179.
46. Akaratovic KI, Kiser JP, Gordon S, Aba-dam CF (2017) Evaluation of the trap-ping performance of four biogents AG traps and two lures for the surveillance of Aedes albopictus and other host-seek-ing mosquitoes. J Am Mosq Control As-soc. 33(2): 108–115.
47. Boonyuan W, Tisgratog R, Ahebwa A, Leepasert T, Thanispong K, Chareonviri-yaphap T (2023) Spatial repellency and attractancy responses of some chemical lures against Aedes albopictus (Diptera: Culicidae) and Anopheles minimus (Dip-tera: Culicidae) using the high-through-put screening system. J Med Entomol. 60(4): 718–724.
48. Omrani S, Vatandoost H, Oshaghi M, Rahi¬mi A (2012) Upwind responses of Anoph¬eles stephensi to carbon dioxide and L-lactic acid: an olfactometer study. East Mediterr Health J. 18(11): 1134–1142.
49. Williams CR, Bergbauer R, Geier M, Kline DL, Bernier UR, Russell RC, Ritchie SA (2006) Laboratory and field assessment of some kairomone blends for host-seek-ing Aedes aegypti1. J Am Mosq Control Assoc. 22(4): 641–647.
50. Wang JN, Hou J, Zhong JY, Cao GP, Yu ZY, Wu YY, Li TQ, Liu QM, Gong ZY (2020) Relationships between traditional larval indices and meteorological factors with the adult density of Aedes albopic-tus captured by BG-mosquito trap. PLoS One. 15(6): e0234555.
51. Xie L, Yang W, Liu H, Liu T, Xie Y, Lin F, Zhou G, Zhou X, Wu K, Gu J, Yan G, Chen XG (2019) Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasit Vectors. 12(1): 382.
52. Owino EA, Sang R, Sole CL, Pirk C, Mbo¬go C, Torto B (2015) An improved odor bait for monitoring populations of Aedes aegypti vectors of dengue and chikungu¬nya viruses in Kenya. Parasit Vectors. 8: 253.
53. Williams CR, Ritchie SA, Russell RC, Ei-ras AE, Kline DL, Geier M (2006) Geo-graphic variation in attraction to human odor compounds by Aedes aegypti mos-quitoes (Diptera: Culicidae): a laborato¬ry study. J Chem Ecol. 32: 1625–1634.
54. Kim DM, Lee DK (2011) Evaluations of attractants, lights and fans for indoor mos¬quito traps against Culex pipiens (Dip¬tera: Culicidae). Entomol Res. 41(6): 275–299.
Files
IssueVol 19 No 2 (2025) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/jad.v19i2.20190
Keywords
Anopheles stephensi; Mosquito attractive compounds; Effective dose; High-Throughput Screening

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Nasrabadi M, Abolghasemi Dehaqani MR, Vatandoost H, Sedaghat MM, Azarm A, Moosakazemi seyed hassan. Laboratory Evaluation of Synthetic Attractants for Anopheles stephensi Using High-Throughput Screening: A Step Towards Development of Mosquito Traps. J Arthropod Borne Dis. 2025;19(2):113-124.