Review Article

Impact of Omics Studies on Understanding Insecticide Resistance Mechanisms in Sub-Saharan Malaria Vectors: A Systematic Review

Abstract

Background: Malaria remains a major global health challenge, disproportionately affecting sub-Saharan Africa. The growing threat of resistance to insecticides in Anopheles vector populations poses a major challenge to the efficacy of core interventions such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This sys­tematic review aimed to evaluate the contribution of omics approaches, particularly genomics, transcriptomics, and mul­ti-omics, to understanding the resistance mechanisms in malaria vectors in sub-Saharan Africa and their impact on cur­rent and future vector control strategies.

Methods: A comprehensive search was conducted using PubMed, Web of Science, and Google Scholar for eligible studies published between January 2016 and April 2025. Studies using at least one omics approach to investigate re­sistance in Anopheles species were included. We extracted and analyzed data on study location, vector species, omics methods, insecticide classes, resistance mechanisms, and key findings according to PRISMA guidelines.

Results: Twenty-two studies met the inclusion criteria. Genomic and transcriptomic approaches revealed key resistance mechanisms, notably involving metabolic resistance, target-site mutations, and cuticular changes. Multi-omics studies uncovered novel resistance markers such as CYP450 reductase (CPR), UDP-glycosyltransferases (UGTs), and salivary gland proteins. Multi-country collaborations were common, reflecting the cross-border nature of insecticide resistance, while species-specific responses highlighted localized adaptation.

Conclusion: Omics studies have significantly enhanced the understanding of resistance to insecticides among malaria vectors, offering valuable insights for molecular diagnostics and region-specific vector control. Integrating these ap­proaches into routine surveillance is crucial to inform sustainable malaria control and elimination strategies.

1. World Malaria Report (2023) World Health Organization, Geneva.
2. Li J, Docile HJ, Fisher D, Pronyuk K, Zhao L (2024) Current status of malaria con-trol and elimination in Africa: Epidemi-ology, diagnosis, treatment, progress and challenges. J Epidemiol Glob Health. 14 (3): 561–579.
3. Weedall GD, Riveron JM, Hearn J, Irving H, Kamdem C, Fouet C, White BJ, Wondji CS (2020) An Africa-wide ge-nomic evo¬lution of insecticide resistance in the ma¬laria vector Anopheles funestus involves selective sweeps, copy number varia¬tions, gene conversion and trans-posons. PLoS Genet. 16(6): e1008822.
4. Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E (2020) Anopheles metabolic proteins in malaria transmission, prevention and con¬trol: a review. Parasit Vectors. 13(1): 465.
5. Chukwuekezie O, Nwosu E, Nwangwu U, Dogunro F, Onwude C, Agashi N, Ezihe Ebuka, Anioke C, Anokwu S, Eloy E, Attah P, Orizu F, Ewo S, Okoronkwo A, Joseph A, Ikeakor I, Ewo S, Okoronkwo A, Joseph A, Ikeakor I, Haruna S, Gnangue¬non V (2020) Resistance status of Anopheles gambiae (s.l.) to four com¬monly used insecticides for malaria vec¬tor control in South-East Nigeria. Parasit Vectors. 13(1): 152.
6. World Malaria Report (2018) World Health Organization, Geneva.
7. Lu G, Traoré C, Meissner P, Kouyaté B, Kynast-Wolf G, Beiersmann C, Cou-libaly B, Becher H, Muller O (2015) Safety of insecticide-treated mosquito nets for infants and their mothers: Ran-dom¬ized controlled community trial in Burki¬na Faso. Malar J. 14(1): 527.
8. Carlier PR, Anderson TD, Wong DM, Hsu DC, Hartsel J, Ma M, Wong EA, Choudhury R, Lam P, Totrov MM, Bloomquist JR (2008) Towards a spe-cies-selective acetylcholinesterase inhib-itor to control the mosquito vector of malaria, Anopheles gambiae. Chem Biol Interact. 175(1–3): 368–375.
9. Ogunah JA, Lalah JO, Schramm KW (2020) Malaria vector control strategies. What is appropriate towards sustainable global eradication? Sustain Chem Pharm. 18: 100339.
10. Coetzee M, Koekemoer LL (2013) Mo-lecular systematics and insecticide re-sistance in the major African malaria vec¬tor Anopheles funestus. Annu Rev Ento¬mol. 58: 393–412.
11. Tebamifor ME, Mamudu CO, Zakari S, Adedeji E, Joel WO, Ogunlana OO (2023) Deltamethrin Resistance Profil¬ing in Anopheles gambiae: A Study in Ota, Ogun State, Nigeria [Internet]. Available at: https://www.researchsquare.com/article/rs-3404878/v1
12. Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo Cyrille (2023) Impact of insecticide re-sistance on malaria vector competence: a literature review. Malar J. 22(1): 19.
13. Sokhna C, Ndiath MO, Rogier C (2013) The changes in mosquito vector behav-iour and the emerging resistance to in-secticides will challenge the decline of malaria. Clin Microbiol Infect. 19(10): 902–907.
14. Odero JO, Nambunga IH, Wangrawa DW, Badolo A, Weetman D, Koekemoer LL, Ferguson HM, Okumu FO, Baldini F (2023) Advances in the genetic charac¬terization of the malaria vector, Anophe¬les funestus and implications for im¬proved surveillance and control. Malar J. 22(1): 230.
15. Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hem-ingway J, Ranson H (2009) Two dupli-cated P450 genes are associated with pyrethroid resistance in Anopheles fu-nestus, a major malaria vector. Genome Res. 19(3): 452–459.
16. Hemingway J, Ranson H (2000) Insecti-cide resistance in insect vectors of hu-man dis¬ease. Annu Rev Entomol. 45: 371–391.
17. Hasan AH, Author C (2020) A review: mosquito proteomics and its potential role in insecticide resistance detection. Int J Mosq Res. 7(4): 112–117
18. Zhong D, Chang X, Zhou G, He Z, Fu F, Yan Z, Zhu G, Xu T, Bonizzoni M, Wang M, Cui L, Zheng B, Chen B, Yan G (2013) Relationship between knock-down re¬sistance, metabolic detoxifica-tion and or¬ganismal resistance to pyre-throids in Anopheles sinensis. PLoS One. 8(2): e55475.
19. Martinez‐Torres D, Chandre F, William¬son MS, Darriet F, Bergé JB, Devon¬shire AL, Guilet P, Pasteur N, Parson D (1998) Molecular characterization of py-rethroid knockdown resistance (kdr) in the major malaria vector Anopheles gam-biae s.s. Insect Mol Biol. 7(2): 179–184.
20. Djogbénou L, Chandre F, Berthomieu A, Dabiré R, Koffi A, Alout H, Weill M (2008) Evidence of introgression of the ace-1R mutation and of the ace-1 dupli-cation in West African Anopheles gam-biae s.s. PLoS One. 3(5): e2172.
21. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anophe¬line mos-quitoes: what are the implica¬tions for malaria control? Trends Parasi¬tol. 27(2): 91–98.
22. Wood OR, Hanrahan S, Coetzee M, Koeke¬moer LL, Brooke BD (2010) Cu-ticle thick¬ening associated with pyre-throid re¬sistance in the major malaria vector Anopheles funestus. Parasit Vec-tors. 3 (1): 67.
23. Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, Mijalovsky SJ, Chalepakis G, Anthousi A, Lynd A, Anotoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J (2016) CYP450 associated with insecticide re-sistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA. 113(33): 9268–9273.
24. Manzoor Malik R, Fazal S, Khatoon N, Ishtiaq M, Batool S, Tauqeer Abbas S (2023) Perspective Chapter: Genomics, Proteomics and System Biology of In-secticides Resistance in Insects. In: In-secticides - Advances in Insect Control and Sustainable Pest Management. Intech Open. Available at: http://dx.doi.org/10.5772/intechopen.112662.
25. Zalucki M, Furlong M (2017) Behavior as a mechanism of insecticide resistance: evaluation of the evidence. Curr Opin Insect Sci. 21: 19–25.
26. Yusuf MA, Vatandoost H, Oshaghi MA, Hanafi-Bojd AA, Manu AY, Enayati A, Ado A, Abdullahi AS, Jalo RI, Firdausi A (2021) Biochemical mechanism of in-secticide resistance in malaria vector, Anopheles gambiae sl in Nigeria. Iran J Publ Health. 50(1): 101–110.
27. Ahmed-Yusuf M, Vatandoost H, Oshaghi MA, Hanafi-Bojd AA, Enayati AA, Jalo RI (2020) First report of target site in-sensitivity in pyrethroid resistant Anoph-eles gambiae from southern Guinea sa-vanna, northern-Nigeria. J Ar¬thropod-Borne Dis. 14(3): 228–238.
28. Fazal S, Manzoor Malik R, Zafar Baig A, Khatoon N, Aslam H, Zafar A, Ishtiaq M (2023) Role of mosquito microbiome in insecticide resistance. In: Mosquito Re¬search-Recent Advances in Pathogen In¬teractions, Immunity and Vector Con-trol Strategies. IntechOpen. Available at: http://dx.doi.org/10.5772/intechopen.104265.
29. Riveron JM, Osae M, Egyir-Yawson A, Irving H, Ibrahim SS, Wondji CS (2016) Multiple insecticide resistance in the major malaria vector Anopheles funestus in southern Ghana: Implications for ma-laria control. Parasit Vectors. 9(1): 504.
30. Barnes KG, Weedall GD, Ndula M, Irving H, Mzihalowa T, Hemingway J, Wondji CS (2017) Genomic footprints of selec-tive sweeps from metabolic resistance to pyrethroids in African malaria vectors are driven by scale-up of insecticide-based vector control. PLoS Genet. 13(2): e1006539.
31. Ingham VA, Wagstaff S, Ranson H (2018) Transcriptomic meta-signatures identi¬fied in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat Commun. 9 (1): 5285.
32. Isaacs AT, Mawejje HD, Tomlinson S, Rigden DJ, Donnelly MJ (2018) Ge-nome-wide transcriptional analyses in Anophe¬les mosquitoes reveal an unex-pected as¬sociation between salivary gland gene ex¬pression and insecticide resistance. BMC Genomics. 19(1): 295.
33. Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN, Kwiatkowski DP, Weetman D, Donnelly MJ (2019) Whole-genome sequencing reveals high com¬plexity of copy number variation at in¬secticide resistance loci in malaria mos-quitoes. Genome Res. 29(8): 1250–1261.
34. Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, Carter TE (2020) Insecticide resistance in Anophe¬les stephensi in Somali Region, eastern Ethiopia. Malar J. 19(1): 180.
35. Clarkson CS, Miles A, Harding NJ, O’Reilly AO, Weetman D, Kwiatkowski D, Donnelly MJ (2021) The genetic ar-chitecture of target‐site resistance to py-rethroid insecticides in the African ma-laria vectors Anopheles gambiae and Anopheles coluzzii. Mol Ecol. 30(21): 5303–5317.
36. Hearn J, Tagne CD, Ibrahim SS, Tene-Fossog B, Mugenzi LJ, Irving H, Riveron JM, Wendall GD, Wondji CS (2021) Mul¬ti-omics analysis identifies a CYP9K1 haplotype conferring pyre-throid re¬sistance in the malaria vector Anopheles funestus in East Africa. Mo-lecular Ecol¬ogy. 31(13): 3642–3657.
37. Ingham VA, Tennessen JA, Lucas ER, Elg S, Yates HC, Carson J, Moussa Guelbeogo W, Sagnon N, Hughes GL, Heinz E, Neafsey DE, Ranson H (2021) Integration of whole genome sequencing and transcriptomics reveals a complex picture of the reestablishment of insecti-cide resistance in the major malaria vec-tor Anopheles coluzzii. PLoS Genet. 17 (12): e1009842.
38. Kouamo MFM, Ibrahim SS, Hearn J, Riveron JM, Kusimo M, Tchouakui M, Ebai T, Tchapga W, Wondji MJ, Irving H, Boudjeko T, Boyom FF, Wondji CS (2021) Genome-wide transcriptional anal¬ysis and functional validation linked a cluster of epsilon glutathione S-transfer¬ases with insecticide resistance in the major malaria vector Anopheles funestus across Africa. Genes. 12(4): 561.
39. Njoroge H, van’t Hof A, Oruni A, Pipini D, Nagi SC, Lynd A, Lucas ER, Tom-linson S, Grau-Bove X, McDermott D, Wat’senga FT, Manzambi EZ, Agossa FR, Moukba A, Irish S, Kabula B, Mbo-go C, Bargul J, Paine MJ, Weetman D, Donnelly MJ (2022) Identification of a rapidly-spreading triple mutant for high-level metabolic insecticide resistance in Anopheles gambiae provides a real-time molecular diagnostic for antimalarial in-tervention deployment. Mol Ecol. 31 (16): 4307–4318.
40. Mugenzi LMJ, Tekoh TA, Ibrahim SS, Muhammad A, Kouamo M, Wondji MJ, Irving H, Hearn J, Wondji CS (2023) The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-re-sistance in the major African malaria vector Anopheles funestus. PLoS Genet. 19(3): e1010631.
41. Zoh MG, Bonneville JM, Laporte F, Tuta-gata J, Sadia CG, Fodjo BK, Mou¬hama-dou CS, McBeath J, Schmitt F, Horst-mann S, Reynaud S, David J (2023) Deltamethrin and transfluthrin select for distinct transcriptomic re¬sponses in the malaria vector Anopheles gambiae. Ma-lar J. 22(1): 341.
42. Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbe-nou LS, Medjigbodo AA, Edi CV, Ke-toh GK, Koudou BG, Van’tHof AE, Rip¬pon EJ, Pipini D, Harding NJ, Dyer NA, Louise TC, Clarkson CS, Kwaia-towski DP, Miles A, Donnelly MJ, Weetman D (2023) Genome-wide asso-ciation studies reveal novel loci associ-ated with pyre¬throid and organophos-phate resistance in Anopheles gambiae and Anopheles coluzzii. Nat Commun. 14(1): 1.
43. Kientega M, Clarkson CS, Traoré N, Hui TYJ, O’Loughlin S, Millogo AA, Epopa PS, Yao FA, Belem AG, Brenas J, Miles A, Burt A, Diabate A (2024) Whole-genome sequencing of major malaria vectors reveals the evolution of new in-secticide resistance variants in a longi-tudinal study in Burkina Faso. Malar J. 23(1): 280.
44. Samake JN, Yared S, Hassen MA, Zohdy S, Carter TE (2024) Insecticide re-sistance and population structure of the invasive malaria vector, Anopheles ste-phensi, from Fiq, Ethiopia. Sci Rep. 14 (1): 27516.
45. Odero JO, Dennis TPW, Polo B, Nwezeobi J, Boddé M, Nagi SC, Her-nandez-koutouche¬va A, Nambunga IH, Bwa¬nary H, Mkandawile G, Govella NJ, Kaindoa EW,Ferguson EO, Clarkson CS, Miles A, Lawniczak MK, Weetman D, Baldinin F, Okumu F (2024) Discov-ery of Knock‐Down Resistance in the Major African Malaria Vector Anophe¬les fu¬nestus. Mol Ecol. 33(22): e17542.
46. Al-Yazeedi T, Muhammad A, Irving H, Ahn SJ, Hearn J, Wondji CS (2024) Overexpression and nonsynonymous mu¬tations of UDP-glycosyltransferases are potentially associated with pyre-throid re¬sistance in Anopheles funestus. Ge¬nomics. 116(2): 110572.
47. Saizonou H, Impoinvil LM, Derilus D, Omoke D, Okeyo S, Dada N, Corredor C, Mulder N, Lenhart A, Ochomo E, Djogbenou LS (2024) Transcriptomic anal¬ysis of Anopheles gambiae from Be-nin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and or-ganophosphates. BMC Genomics. 25(1): 134.
48. Ingham V, Nagi S (2024) Genomic profil-ing of insecticide resistance in malaria vectors: Insights into molecular mecha-nisms [preprint]. Res Sq. 14: rs.3.rs-3910702/v1.
49. Nagi SC, Ingham VA (2025) A multi-omic meta-analysis reveals novel mech-anisms of insecticide resistance in ma-laria vectors. Commun Biol. 8(1): 456.
50. Gadji M, Hervé Raoul T, Kouamo MFM, Tchouakui M, Wondji MJ, Mugenzi LMJ, Irving H, Hearn J, Ibrahim SS, Wondji SC (2025) Genomic drivers of pyre¬throid resistance escalation in the malaria vec¬tor Anopheles funestus across Africa. Mol Biol Evol. 42(10): msaf251.
51. Clarkson CS, Temple HJ, Miles A (2018) The genomics of insecticide resistance: insights from recent studies in African ma¬laria vectors. Curr Opin Insect Sci. 27: 111–115.
52. Huang X, Kaufman PE, Athrey GN, Fre-dregill C, Alvarez C, Shetty V, Slotman MA (2023) Potential key genes involved in metabolic resistance to malathion in the southern house mosquito, Culex quin¬que¬fasciatus and functional valida-tion of CYP325BC1 and CYP9M12 as candi¬date genes using RNA interfer-ence. BMC Ge¬nomics. 24(1): 160.
53. Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS (2024) Functional validation of endogenous redox partner CYP450 re¬ductase reveals the key P450s CYP6P9a/-b as broad substrate metabo-lizers con¬fer¬ring cross-resistance to dif-ferent in¬sec¬ticide classes in Anopheles funestus. Int J Mol Sci. 25(15): 8092.
54. Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJI, Wondji CS (2013) Directionally selected CYP450 al¬leles are driving the spread of pyre-throid resistance in the major malaria vector Anopheles funestus. Proc Natl Acad Sci U S A. 110(1): 252–257.
55. Gong Y, Li T, Li Q, Liu S, Liu N (2022) The central role of multiple P450 genes and their co-factor CPR in the develop-ment of permethrin resistance in the mos¬quito Culex quinquefasciatus. Front Phys¬iol. 12: 780509.
56. Varela GM, García BA, Stroppa MM (2024) RNA interference of NADPH CYP450 increased deltamethrin suscep-tibility in a resistant strain of the Chagas disease vector Triatoma infestans. Acta Trop. 252: 107149.
57. Adedeji EO, Beder T, Damiani C, Cappel-li A, Accoti A, Tapanelli S, Ogunlana OO, Fatumo S, Favia G, Koenig R, Adebiyi E (2025) Correction: Combina-tion of com¬putational techniques and RNAi reveal tar¬gets in Anopheles gam-biae for ma¬laria vector control. PLoS One. 20(3): e0321231.
58. Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martin AJ, Kasai S, Chandre F (2019) Management of insec-ticide resistance in the major Aedes vec-tors of arboviruses: advances and chal-lenges. PLoS Negl Trop Dis. 13(10): e0007615.
59. Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, Kamuliwo M, Phiri FN, Muzia L, Chan-da J, Kandyata A, Chirwa B, Poer K, Coleman M (2014) Underpinning sus-tainable vector control through informed insecticide resistance management. PLoS One. 9(6): e99822.
60. Obeagu EI, Obeagu GU (2024) Emerging public health strategies in malaria con-trol: innovations and implications. Ann Med Surg. 86(11): 6576–6584.
61. Donnelly MJ, Isaacs AT, Weetman D (2016) Identification, validation and application of molecular diagnostics for insecticide resistance in malaria vectors. Trends Par¬asitol. 32(3): 197–206.
62. Aderoyeje TG, Erhuanga OG (2024) A review on the exploration of genomic approaches to malaria prevention and treatment in Nigeria. J Appl Sci Environ Manage. 28(9): 2937–2941.
Files
IssueIn Press QRcode
SectionReview Article
Keywords
Malaria; Anopheles; Omics approaches; Insecticide resistance; Vector control

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Orogun Y, Ogunlana O, Taiwo D, Fadare O. Impact of Omics Studies on Understanding Insecticide Resistance Mechanisms in Sub-Saharan Malaria Vectors: A Systematic Review. J Arthropod Borne Dis. 2025;.