Baseline Susceptibility of Culiseta longiareolata (Diptera: Culicidae) to Different Imagicides, in Eastern Azerbaijan, Iran

  • Teimour Hazratian Departmemt of Parasitology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
  • Azim Paksa Departmemt of Parasitology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
  • Mohammad Mahdi Sedaghat Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Hassan Vatandoost Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, Department of Environmental Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
  • Seyed Hassan Moosa-Kazemi Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Alireza Sanei-Dehkordi Department of Medical Entomology and Vector Control, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran, Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
  • Yaser Salim-Abadi Department of Health Services and Health Promotion, School of Health, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
  • Masoumeh Pirmohammadi Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Saideh Yousefi Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Masoumeh Amin Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Mohammad Ali Oshaghi Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Keywords: Baseline susceptibility, Culiseta longiareolata, Insecticides

Abstract

Background: Culiseta longiareolata is an important vector for many human diseases such as brucellosis, avian influen­za and West Nile encephalitis. It is likely an intermediate host of avian Plasmodium that can transmit Malta fever. The aim of this study was to determine the  susceptibility level of Cs. longiareolata to different classes  of imagicides  which are recommended by World Health Organization .Methods: Larval stages of the Cs. longiareolata were collected from their natural habitats in Marand County at East Azerbaijan Province, northwestern of Iran in 2017. Adult susceptibility test were carried out with using impregnated papers to insecticides including DDT 4%, Cyfluthrin 0.15%, Deltamethrin 0.05%, Propoxur 0.1% and Fenitrothion 1% by standard test kits.Results: Results showed that Cs. longiareolata adult is more susceptible to pyrethroid and carbamate insecticides. Among tested insecticides, Cyfluthrin was the most toxic against Cs. longiareolata with LT50 value of 11.53 minutes and  Fenitrothion had the least toxic  effect (LT50: 63.39 min).Conclusions: This study provided a guideline for monitoring and evaluation of insecticide susceptibility tests against Cs. longiareolata  mosquitoes for further decision making.

References

1. Becker N, Hoffmann D (2011) First record of Culiseta longiareolata (Macquart) for Germany. Eur Mosq Bull. 29: 143–150.
2. Brogdon WG, McAllister JC (1998) Insec-ticide resistance and vector control. Emerg Infect Dis. 4(4): 605–613.
3. Azari-Hamidian S, Norouzi B, Har¬bach RE (2019) A detailed review of the mosque-toes (Diptera: Culicidae) of Iran and their medical and veterinary importance. Acta Trop. 194: 106–122.
4. Mullen G, Durden L (2009) Medical and Veterinary Entomology, 2ed edition, Mos¬quitoes (Culicidae) Woodbridge A. Fos-ter and Edward D Walter. Vol. 2. Else-vier, Burling¬ton.
5. Paksa A, Sedaghat MM, Vatandoost H, Yaghoobi-Ershadi MR, Moosa-Kazemi SH, Hazratian T (2019) Biodiversity of mos¬quitoes (Diptera: Culicidae) with em¬phasis on potential arbovirus vectors in East Azerbaijan Province, northwestern Iran. J Arthropod Borne Dis. 13(1): 62–75.
6. Bernard KA, Maffei JG, Jones SA, Kauff-man EB, Ebel G, Dupuis A (2001) West Nile virus infection in birds and mosqui-toes, New York State, 2000. Emerg In-fect Dis. 7(4): 679.
7. Hayes CG (2001) West Nile virus: Uganda, 1937, to New York City, 1999. Ann N Y Acad Sci. 951: 25–37.
8. Smithburn K, Hughes T, Burke A, Paul J (1940) A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg. 1(4): 471–492.
9. Bagheri M, Terenius O, Oshaghi MA, Mota¬zakker M, Asgari S, Dabiri F, Vatan¬doost H, Mohammadi Bavani M, Chavshin AR (2015) West Nile Virus in Mosquitoes of Iranian Wetlands. Vector Borne Zoono-tic Dis. 15(12): 750–754.
10. Knight KL, Stone A (2011) A catalog of the mosquitoes of the world (Diptera: Cu¬licidae). Thomas Say Found. Ann Ento-mol Soc Am. p. 611.
11. Lotfi M (1976) Key to Culicinae of Iran, genus Culex and their biology (Diptera: Culicidae). Iran J Public Health. 5: 71–84.
12. Ward RA (1984) Second supplement to a catalog of the mosquitoes of the world (Diptera: Culicidae). Mosquito System-atics. 16(3): 227–270
13. Ward RA (1992) Third supplement to 'A catalog of the mosquitoes of the World' (Diptera: Culicidae). Walter reed army INST of research Washington DC. p.55
14. Koosha M, Oshaghi MA, Sedaghat MM, Vatandoost H, Azari-Hamidian S, Abai MR, Hanafi-Bojd AA, Mohtarami F (2017) Sequence analysis of mtDNA COI barcode region revealed three haplotypes within Culex pipiens assemblage. Exp Par¬asitol. 181: 102–110.
15. Hanafi-Bojd AA, Vatandoost H, Oshaghi MA, Charrahy Z, Haghdoost AA, Seda-ghat MM, Abedi F, Soltani M, Raeisi A (2012) Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Cu-licidae) in a malarious area of southern Iran. J Vector Borne Dis. 49(2): 91–100.
16. Oshaghi MA, Vatandoost H, Gorouhi A, Abai MR, Madjidpour A, Arshi S, Sadeghi H, Nazari M, Mehravaran A (2011) Anophe¬line species composition in bor-derline of Iran-Azerbaijan. Acta Trop. 119(1): 44–49.
17. Doosti S, Azari-Hamidian S, Vatan¬doost H, Oshaghi MA, Hosseini M (2006) Taxo-nom¬ic differentiation of Anopheles sa¬charovi and An. maculipennis S.l. (Dip-tera: Culicidae) larvae by seta 2 (antepal¬mate hair). Acta Medica Iranica. 44(1): 21–27.
18. Maslov AV, Ward RA, Rao P (1989) Blood-sucking mosquitoes of the subtribe Culisetina (Diptera: Culicidae) in world fau¬na. p. 262.
19. Romi R, Pontuale G, Sabatinelli G (1997) Le zanzare italiane: generalità e iden-tificazione degli stadi preimaginali (Dip-tera, Culicidae): Università degli Studi di Roma "La Sapienza", Dipartimento di Bi¬ologia Ani¬male e dell'Uomo. p. 106
20. Roiz D, Eritja R, Escosa R, Lucientes J, Marquès E, Melero-Alcíbar R (2007) A survey of mosquitoes breeding in used tires in Spain for the detection of im-ported potential vector species. J Vector Ecol. 32(1): 10–15.
21. Blaustein L, Margalit J (1995) Spatial dis-tributions of Culiseta longiareolata (Cu-licidae: Diptera) and Bufo viridis (Am-phibia: Bufonidae) among and within de¬sert pools. J Arid Environ. 29(2): 199–211.
22. Clark GG, Rangel YN (1998) Mos¬quito vector control and biology in latin amer-ica, An Eighth Symposium. J AM Mos-quito Control. 14(3): 219–233.
23. Davis DL, Ahmed AK (1998) Expo¬sures from indoor spraying of chlorpyrifos pose greater health risks to children than cur¬rently estimated. Environ Health Persp. 106(6): 299.
24. Van den Berg H (2009) Global status of DDT and its alternatives for use in vec-tor control to prevent disease. Environ Health Persp. 117(11): 1656.
25. Abuelmaali SA, Elaagip AH, Basheer MA, Frah EA, Ahmed FT, Elhaj HF (2013) Impacts of agricultural practices on in-secti¬cide resistance in the malaria vector Anophe¬les arabiensis in Khartoum State, Sudan. PLoS One. 8(11): e80549.
26. Diabate A, Baldet T, Chandre F, Akoobe-to M, Guiguemde TR, Darriet F (2002) The role of agricultural use of insecti-cides in resistance to pyrethroids in Anopheles gambiae sl in Burkina Faso. Am J Trop Med Hyg. 67(6): 617–622.
27. Vatandoost H, Ezeddinloo L, Mahvi A, Abai M, Kia E, Mobedi I (2004) Enhanced tol¬erance of house mosquito to different in¬secticides due to agricultural and house-hold pesticides in sewage system of Teh¬ran, Iran. Iran J Environ Health Sci Eng. 1(1): 4245.
28. Corbel V, N’guessan R, Brengues C, Chan-dre F, Djogbenou L, Martin T (2007) Mul¬tiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinque-fascia¬tus from Benin, West Africa. Acta Trop. 101(3): 207–216.
29. Gorouhi MA, Vatandoost H, Oshaghi MA, Raeisi A, Enayati AA, Mirhendi H (2016) Current susceptibility status of Anoph¬eles stephensi (Diptera: Culicidae) to different imagicides in a malarious area, southeast¬ern of Iran. J Arthropod Borne Dis. 10 (4): 493–500.
30. Salim-Abadi Y, Asadpour M, Sharifi I, Sanei-Dehkordi A, Gorouhi MA, Paksa A (2017) Baseline susceptibility of filarial vec¬tor Culex quinquefasciatus (Diptera: Cu¬licidae) to five insecticides with dif-ferent modes of action in southeast of Iran. J Ar¬thropod Borne Dis. 11(4): 453–462.
31. Salim-Abadi Y, Oshaghi MA, Enayati AA, Abai MR, Vatandoost H, Eshraghian MR (2016) High insecticides resistance in Cu¬lex pipiens (Diptera: Culicidae) from Teh¬ran, capital of Iran. J Arthropod Borne Dis. 10(4): 483–492.
32. Gorouhi MA, Oshaghi MA, Vatan¬doost H, Enayati AA, Raeisi A, Abai MR (2018) Biochemical basis of cyfluthrin and DDT resistance in Anopheles stephensi (Dip¬tera: Culicidae) in malarious area of Iran. J Arthropod Borne Dis. 12(3): 310–320.
33. Dehkordi AS, Abadi YS, Nasirian H, Haz-ratian T, Gorouhi MA, Yousefi S (2017) Synergists action of piperonyl butoxide and S, S, S-tributyl phosphorotrithioate on toxicity of carbamate insecticides against Blattella germanica. Asian Pac J Trop Med. 10(10): 981–986.
34. Salehi A, Vatandoost H, Hazratian T, Sanei-Dehkordi A, Hooshyar H, Arbabi M (2016) Detection of bendiocarb and car-baryl resistance mechanisms among Ger¬man cock¬roach, Blattella germanica (Blat¬taria: Blat¬tellidae) collected from Tabriz Hospitals, East Azerbaijan Province, Iran in 2013. J Arthro¬pod Borne Dis. 10(3): 405–414.
35. Finney DJ, Probit Analysis (1971) 3d Ed: Cambridge University Press. p. 333.
36. World Heath Organization (WHO) (2005) Guidelines for laboratory and field test-ing of mosquito larvicides. p. 41.
37. World Health Organization (WH0) (1981) Instructions for determining the sus¬cep-tibility or resistance of mosquito larvae to insecticides. p. 6.
38. Abbott WS (1925) A method of com¬pu-ting the effectiveness of an insecticide. J Eco Entomol. 18(2): 265–267.
39. World Heath Organization (WHO) (1998) Test procedures for insecticide re¬sistance monitoring in malaria vectors, bio-effi¬ca-cy and persistence of insecticides on treat¬ed surfaces: report of the WHO informal consultation, Geneva, 28–30 September 1998. p. 46.
40. World Heath Organization (WHO) (2016) Test procedures for insecticide re¬sistance monitoring in malaria vector mosqui¬toes. 2nd edition. p. 54.
41. Ataie A, Moosa-Kazemi SH, Vatan¬doost H, Yaghoobi-Ershadi MR, Bakhshi H, Anjomruz M (2015) Assessing the sus-cepti¬bility status of mosquitoes (Diptera: Cu¬licidae) in a dirofilariasis focus, North¬western Iran. J Arthropod Borne Dis. 9 (1): 7–12.
42. Salima Abadi Y, Vatandoost H, Rassi Y, Abai MR, Saneei Dehkordi AR, Paksa A (2013) Evaluation of biological control agents for mosquitoes control in artifi-cial breeding places. Asian Pac J Trop Med. 3(4): 276–277.
43. Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick AM (2011) “Bird biting” mos¬quitoes and human disease: a review of the role of Culex pipiens complex mos-quitoes in epidemiology. Infect Genet Evol. 11(7): 1577–1585.
44. Katbeh Bader A, Khyami‐Horani H, Mohsen Z (1999) Effect of temperature on the susceptibility of Culiseta longiareolata (Mac¬quart)(Diptera: Culicidae) to two standard strains of biocontrol bacteria. J Appl Entomol. 123(10): 629–631.
45. Bouaziz A, Boudjelida H, Soltani N (2011) Toxicity and perturbation of the me¬tab¬olite contents by a chitin synthesis inhib¬i¬tor in the mosquito larvae of Culiseta longi¬areolata. Ann Biol Res. 2(3): 134–143.
46. Nazari M, Janbakhsh B (2000) A sur¬vey of the susceptibility level of Culex theileri and Cx. pipiens to DDT, Dieldrin, Propoxur and Malathion in the southern area of Tehran. Urmia Med J. 11(1): 13–19.
47. Zare M, Soleimani-Ahmadi M, Davoodi SH, Sanei-Dehkordi A (2016) Insec-ticide sus¬ceptibility of Anopheles stephensi to DDT and current insecticides in an elimina¬tion area in Iran. Parasit Vectors. 9(1): 571–575.
48. Sanei-Dehkordi A, Soleimani-Ahmadi M, Akbarzadeh K, Salim Abadi Y, Paksa A, Gorouhi MA (2016) Chemical composi-tion and mosquito larvicidal properties of essential oil from leaves of an Iranian indigenous plant Zhumeria majdae. J Es¬sent Oil Bear Pl. 19(6): 1454–1461.
49. Soleimani-Ahmadi M, Abtahi SM, Mada-ni A, Paksa A, Abadi YS, Gorouhi MA (2017) Phytochemical profile and mos-quito larvicidal activity of the essential oil from aer¬ial parts of Satureja bachtiarica Bunge against malaria and lymphatic fil¬ariasis vec¬tors. J Essent Oil Bear Pl. 20 (2): 328–336.
50. Soleimani-Ahmadi M, Gorouhi MA, Aza-ni S, Abadi Y, Paksa A, Rashid G (2017) Larvicidial effects of essential oil and meth¬a¬nol extract of Achillea wilhelmsii C. Koch (Asteraceae) against Anopheles stephensi Lis¬ton (Diptera: Culicidae), a malaria vector. J Kerman Univ Med Sci. 24(1): 58–67.
51. Soleimani-Ahmadi M, Sanei-Dehkordi A, Turki H, Madani A, Abadi YS, Paksa A (2017) Phytochemical properties and in-secti¬cidal potential of volatile oils from Tanace¬tum persicum and Achillea kella-lensis against two medically important mosquitoes. J Essent Oil Bear Pl. 20(5): 1254–1265.
52. Vatandoost H, Sanei-Dehkordi A, Sadeghi S, Davari B, Karimian F, Abai M (2012) Identification of chemical constituents and larvicidal activity of Kelussia odo-ratissima Mozaffarian essential oil against two mosqui¬to vectors Anopheles stephen¬si and Culex pipiens (Diptera: Culicidae). Exp Parasitol. 132(4): 470–474.
53. Sanei-Dehkordi A, Soleimani-Ahmadi M, Salim-Abadi Y, Paksa A (2019) Wild chive oil is an extremely effective larvicide against malaria mosquito vector Anoph-eles stephensi. Asian Pac J Trop Med. 12(4): 170–174.
54. Sedaghat MM, Sanei-Dehkordi AR, Kha-navi M, Abai MR, Mohtarami F, Vatan-doost H (2011) Chemical composition and larvicidal activity of essential oil of Cu-pres¬sus arizonica E.L. Greene against malaria vector Anopheles stephensi Lis-ton (Diptera: Culicidae). Pharmacogn Res. 3(2): 135–139.
55. Davari B, Vatandoost H, Oshaghi MA, La¬donni H, Enayati AA, Shateghi M, Basseri HR, Rassi Y, Hanafi-Bojd AA (2007) Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pes¬tic Biochem Phys. 89(2): 97–103.
Published
2019-08-03
How to Cite
1.
Hazratian T, Paksa A, Sedaghat MM, Vatandoost H, Moosa-Kazemi SH, Sanei-Dehkordi A, Salim-Abadi Y, Pirmohammadi M, Yousefi S, Amin M, Oshaghi MA. Baseline Susceptibility of Culiseta longiareolata (Diptera: Culicidae) to Different Imagicides, in Eastern Azerbaijan, Iran. J Arthropod Borne Dis. 13(4):407-415.
Section
Original Article